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Abstract. The 1D Fourier-Kirchhoff type equation in whidietterm connected with the
first derivative of unknown function is considerddhis equation supplemented by adequate
boundary conditions is solved by means of the bagndlement method. In the final part of
the paper the examples of computations are shown.

1. Formulation of the problem

The one-dimensional Fourier-Kirchhoff type equati®eonsidered

d’T(x) ! dT (X)

dx? dx ¢ @

O<x<L: a

wherea = A/c is the thermal diffusivity X is the thermal conductivity andl is
the volumetric specific heat, respectively, is the velocity, T denotes
the temperature andis the spatial co-ordinate.

The equation (1) can be immidiatelly solved usimg analytical methods, but
taking into account the planned research concertliegnumerical modeling of
selected heat transfer problems the considerapoasented below can be very
useful at the next stages of investigations.

The equation (1) is supplemented by boundary comdit

x=0: qal[T,d—T J =0
dx

X=L: CDZ(T d—Tj =0

(2
"d x

To solve the problem (1), (2) the boundary elenmeetthod is proposed.
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2. Boundary element method

At first, the weighted residual criterion [1-3] fequation (1) is formulated

j- {dZT(x)_EdT(X)}T*@,X)dX - 3)

. dx* a dx

where¢ is the observation point affd (¢, X) is the fundamental solution.
The integral (3) we substitute by a sum of two gnads, while the first of them
we transform by integrating twice by parts

S d*T(x)_. . dT (x) L_
{ ™ T(a,x)dx-[T @’X)Tl
TdT oT (F, X) dx (4)
o dx
* dT(x) _ 0T (6.0 1 © o La?T (E, %) _
R CR LU LI (x)L@—ax () & =

It is a special case of the well knowl{ Breen formula which is used in deriva-
tions concerning the more complex (e.g. 2D) boundategral equations. The
second integral in (3) we integrate by parts

x=L

[uaT0) o, ax = LT EXT() | -

(5)
fuaT (g X)
Ig T(x) dx
Introducing (4), (5) into (3) we have
d ‘ -
{T*@,X) LE(X) - aTa(i'X)T(X) - ET*@X)T(X)} +
* 0 (6)
f{ azTaf;,x) +§ aTa(i,x) }T(X) & -0

Fundamental solutiol” (&, x) should fulfill the following equation

0°T (5.%) , u 3T (€,

O< x<L: u
0 x? a 0 X

= —§(&,x) (7)
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wheres (&, x) is the Dirac function

6<<:,x)={°’“x ®)
o | e“;: X
Taking into account the property (7) the equat®ntékes a form
HT*@,x)q(x)+ 24’ €T (¥) —ET*(a,x)T(x)} +
a 0 9)
—jL' 3, X)T(x)dx = 0
where i
q(x) = _de(x)
dx (10)
, _ L, 0T (5,%)
q€.x) = A

Finally, the equation (9) can be written as follows
1 . u_ -« :
=] TaE0-_TETH)| A

L
0 0

T(&){%T*(a,x)q(x)}

or
T(2) + %T*(&,L)q(L) —%T*(a,O)q 0) =

1 . u_ « 1 . u_ «
hq (&,L)—ET (é,L)}T(L) —hq (E,O)—ET (é,O)}T(O)

The BEM resolving system is determined by calcatsi of the limits corre-
sponding to the 'location’ of observation pointhat boundary (in this case we take

(12)

£ - 0 andg - L").
So, we obtain system of two equations which cawifitéen in the matrix form

T(0 1 1. 0
(0) =T°0.0) ST OL) q(0)

1_. 1_.
T(L)] [~ TE0 T .L)a(L) 13)

1 .. _u_. E « _u_.
{;q(o 0) -2 (0,0)} bq O L)-T (OL} T(0)

1 ., _ u_. 1 ., . u_.
{X‘”L 0-Yr <L,0)} {XQ(L DYy (L,L)} T(L)
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or
1 1
_= * <+ * q 0
~T'(0,0 —T(0L) ():
1_. 1_.
-=T(L,0) =T'(L.L
LT L0 T (L) g(L) 14
—F q*(0+,0)—ET*(0,0)}— [3 q (O L)-21° (OL} T(0)
A a A a

1 ., - u_. 1 . - u_.
{xq (L.0)-27 (L,0>} [Xqu LT (L,L)}—l T(L)

In (14) four boundary values appear, this mearn8), T (L), q(0), q(L). Two of
them are known from boundary conditions, the othvershould be determined.

Next, the temperaturk at the optional internal poigt](0, L) can be calculated
using the formula (c.f. equation (12))

T(g) = [1 q'EL) - ET*(éaL)}T(L) -

1 . u_. 1._. 1_.
h q (é.O)—gT (é,O)}T(O) o T €.L) aq(L) + =T (€.,0) a(0)

3. Fundamental solution

To apply the boundary element method the form nfi&imental solution should
be known. For the case considered it is the folhguiunction [4]

T = TR el U g - 209 (16
2\ A
where
. _] 1, x=&>0 o _ 1, x=&>0 17
san & @‘{—1, NESPAEY’ @-{o,x-gw an
To check does the solution (16) fulfills the eqaat{7) we calculate
LN 4 sant-gex] -2 k9| (18)

and

2T (6.%) _  u? _ U
GG e i sng-gen| -4 €-0) (19)
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Introducing (18), (19) into the left hand-side afuation (17) we obtain right
hand-side of this equation. In Figure 1 the fundatadesolution for§ = L/3 is
shown.
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Fig. 1. Fundamental solution

The heat flux resulting from fundamental solutisrequal to

4. %)= —xm=isgn@—aexp{—3 «—aj (20)
0 X 2a a

On the basis of (16) and (20) we have

oo et} e et
1
A

' =1 ‘ - oY) - (21)
T (0,0) o T (OL) 3 ex;E aLj
' = _i E ! = —i
T (L,0)= nexr{a Lj, TLD= -
and
’ = _i E : = i —E -
q(€,0)= a ex;{a é), q E,L) o exp( S (L g))
q'(0,0)= ——, qOL)=-L exﬁE_ELj (22)
2a 2a a

* u u * u
L,0)= —— — L], = —
q(L,0) Zaexl{a j qtl) >a
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So, the system of equations (14) takes a form

1 exp(—u—;j— 2|[ a(0)

1 _
W ulL -
eXp(?j ! a(t) (23)
u
-1 ~y T(O)
u
0 a—l T(L)

while the equation (15) is as follows

T(E) = iT(L){% -1 exp(—g(L-a)ﬂqm -

1 u
el 24
e exp( - ij q(0) (24)

2)\%

4. Results of computations

The layer of thicknesk = 0.1m is considered. In computations the following
values of thermophysical parameters have been takeraccount: thermal con-
ductivity . = 10 W/(mK), volumetric specific heat = 16 W/(m® K), velocity
u=0.0001 m/s. It should be pointed out that thdyaical solution for the problem
considered is known

T(x) = C, +C, exp(% xj (25)

where C,, C, are the integral constants. The valuesCofand C, are calculated
using boundary conditions, of course.

In the first version of computations the DirichlednditionsT (0) = 50°C
andT (L) = 100°C are assumed. In Figure 2 the temperalistabution obtained
analytically (line) and by means of the BEM (syn#)dk shown. Both results are
the same. It confirms the exactness of the BEM.

The second version of computations is connectetl Ritbin condition, this
means fox = L: g(L) = o [T(L) — TJ], wherea = 50 W/(nfK) is the heat transfer
coefficient and T, = 20°C is the ambient temperature. For = 0
the Dirichlet conditionT (0) = 50°C is assumed. In Figure 3 the comparison
of analytical and numerical solutions is presenfedpreviously, the results are the
same.
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Fig. 2. Analytical and numerical solutions — vatian
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Fig. 3. Analytical and numerical solutions - vatian

Final remarks

To solve the 1D Fourier-Kirchhoff type equationvitich the term connected
with the first derivative of unknown function appeshe boundary element method
is proposed. The results obtained compared witlatiadytical solutions confirm the
exactness and effectiveness of the algorithm preden
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