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Abstract. The 1D Fourier-Kirchhoff  type equation in which the term connected with the 
first derivative of unknown function is considered. This equation supplemented by adequate 
boundary conditions is solved by means of the boundary element method. In the final part of 
the paper the examples of computations are shown. 

1. Formulation of the problem 

The one-dimensional Fourier-Kirchhoff type equation is considered 
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where a = λ/c is the thermal diffusivity (λ is the thermal conductivity and c is 
the volumetric specific heat, respectively), u is the velocity, T denotes 
the temperature and x is the spatial co-ordinate. 

The equation (1) can be immidiatelly solved using the analytical methods, but 
taking into account the planned research concerning the numerical modeling of 
selected heat transfer problems the considerations presented below can be very 
useful at the next stages of investigations. 
The equation (1) is supplemented by boundary conditions 
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To solve the problem (1), (2) the boundary element method is proposed. 
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2. Boundary element method 

At first, the weighted residual criterion [1-3] for equation (1)  is formulated 
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where ξ is the observation point and T * (ξ, x) is the fundamental solution. 
The integral (3) we substitute by a sum of two integrals, while the first of them 

we transform by integrating twice by parts 
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It is a special case of the well known 2nd Green formula which is used in deriva-
tions concerning the more complex (e.g. 2D) boundary integral equations. The 
second integral in (3) we integrate by parts 
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Introducing (4), (5) into (3) we have 
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Fundamental solution T * (ξ, x) should fulfill the following equation 
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where δ (ξ, x) is the Dirac function 
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Taking into account the property (7) the equation (6) takes a form 
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where 
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Finally, the equation (9) can be written as follows 
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or 
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The BEM resolving system is determined by calculations of the limits corre-
sponding to the 'location' of observation point at the boundary (in this case we take 
ξ → 0+ and ξ → L 

−). 
So, we obtain system of two equations which can be written in the matrix form 
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or 
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In (14) four boundary values appear, this means T (0), T (L), q(0), q(L). Two of 
them are known from boundary conditions, the other two should be determined.  

Next, the temperature T at the optional internal point ξ∈ (0, L) can be calculated 
using the formula (c.f. equation (12)) 
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3. Fundamental solution 

To apply the boundary element method the form of fundamental solution should 
be known. For the case considered it is the following function [4] 
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To check does the solution (16) fulfills the equation (7) we calculate 
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Introducing (18), (19) into the left hand-side of equation (17) we obtain right 
hand-side of this equation. In Figure 1 the fundamental solution for ξ = L/3 is 
shown. 

 

 
Fig. 1. Fundamental solution 

The heat flux resulting from fundamental solution is equal to 
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On the basis of (16) and (20) we have 
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So, the system of equations (14) takes a form 
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while the equation (15) is as follows 
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4. Results of computations 

The layer of thickness L = 0.1 m is considered. In computations the following 
values of thermophysical parameters have been taken into account: thermal con-
ductivity λ = 10 W/(mK), volumetric specific heat c = 106 W/(m3 K), velocity 
u = 0.0001 m/s. It should be pointed out that the analytical solution for the problem 
considered is known 
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where C1, C2 are the integral constants. The values of C1 and C2 are calculated 
using boundary conditions, of course. 

In the first version of computations the  Dirichlet conditions T (0) = 50°C 
and T (L) = 100°C are assumed. In Figure 2 the temperature distribution obtained 
analytically (line) and by means of the BEM (symbols) is shown. Both results are 
the same. It confirms the exactness of the BEM. 

The second version of computations is connected with Robin condition, this 
means for x = L: q(L) = α [T (L ) − Ta], where α = 50 W/(m2 K) is the heat transfer 
coefficient and Ta = 20°C is the ambient temperature. For x = 0 
the Dirichlet condition T (0) = 50°C is assumed. In Figure 3 the comparison 
of analytical and numerical solutions is presented. As previously, the results are the 
same. 
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Fig. 2. Analytical and numerical solutions – variant 1 

 
Fig. 3. Analytical and numerical solutions - variant 2 

Final remarks 

To solve the 1D Fourier-Kirchhoff type equation in which the term connected 
with the first derivative of unknown function appears the boundary element method 
is proposed. The results obtained compared with the analytical solutions confirm the 
exactness and effectiveness of the algorithm presented. 
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