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Abstract. This paper contains an investigation of an open exponential network with bypass
of systems of multi-type messages with absolute priority in transient behavior. Messages
with priority received by the node with the probability depending on the state system and
the type of incoming messages are for service, forcing messages that are serviced or instant
changes in the following system, and can leave the network. Network settings: the intensity
of the incoming flow and the intensity of service of different types of messages in single-
-line systems and the conditional probabilities of transitions of messages between the sys-
tems are dependent on the time. We obtained a system difference-differential equations for
the state probabilities of the network. To find the state probabilities of the network in the
transitional behavior applied a methodology based on the use of the apparatus of multi-
dimensional generating functions.
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1. General information

Results of investigations for an open network with multi-line exponential
queueing systems (QS) with one-type messages bypass of systems in transient be-
havior were presented in [1]. In this paper, such a network was investigated, but
with multi-type and absolute priority of incoming messages. If the message is re-
ceived with an absolute priority in the QS, it immediately begins to serve, cutting
the duration of their service request found there. The displaced thereby shall be
returned to the top of the turn and the expected continuation of service (Priority
Service), goes immediately into the next system or leaves the network.

In the information and telecommunication systems and networks messages with
the absolute priority concerned to the operator commands Queueing Networks
(QN) with bypassing of messages in the queueing systems can be used in model-
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ling, when a user sends a request to a system service, estimates how much time it
will have to wait, or how many users requests in front of its in line, and depending
on this evaluation remains to expect or forwards its request to another system. Such
a situation may arise in the service point or points for communities.

As mentioned earlier in [1], we consider an open network of exponential QN
with an arbitrary structure consisting of # QS S,,S,,...,S,. with some probabil-
ity, join the queue queueing, and with an additional probability to move immedi-
ately according to the matrix of transition probabilities to another QS or leave the
network. The probability of joining the QS depends on the state of the QS and the
number of QS with which the messages are sent to this QS.

The state of the network will be understood as a vector of dimension nxr:

k(@) =(k,t)= (ki1 kiyser ki sko1skag sees ks ki skynseens kst ), @9

where k,, — the number of messages of type ¢ at the moment ¢ in the system S,,

r —
k;=Y k,., i=1ln. Let m, - number of identical service lines in the QS &,

c=1
i=1,n . The network receives a simple flow of messages with intensity A(k.7), i.e.
the time interval [#,¢+Ar) the network receives a message with a probability
A(k,t) At +0(Ar). If at the time ¢ of service on the line i-th QS is located mes-
sage, at the range [r,7+Ar) of its services will end with a probability
i, (k,t)At+o(Ar), where u,, (k,t) - the intensity of service of messages or type

¢ at every line of system S, at the moment time 7, i=1n, c=1r. In i-th QS the
message of type ¢, independently of other of messages receives, with a probability
Poeies i=Ln, c=1r. The message sent to this QS from the external environment
at moment time £, having type ¢, when the network is in a state (k,z), with a prob-

ability f (ie) (k,t), depending on the state of the i-th QS and type of its message,
instantly becomes a service or joins the queue, if there are any, and with probability
1-f (te) (k,t) does not join the queue and immediately bypasses the system. Its

behavior in the future, such as if it is served by this QS and has type ¢, i.e., its time
of service with a probability of 1 is equal to zero. Message of type ¢ with having
completed service in the i-th QS, independently of other of applications instantly
sent to the j-th and the QS is the message of type s, with probability p. . ; with

icjs>

n r
it leaves the network z Zp,”s +Picoe=1, i,j=Ln,
J=1 s=1

probability p

icOc

c,s=Lr.
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[

. The system of difference-differential equations for the probability
of network states

Let:

(p}.c( k,t) - the conditional probability, that the message of type c is delivered
to the i-th QS at time 7, when the network is in a state (k,z), will not be serviced
by any of the QS, i=Ln,c=1r;

Vi (k, ) - the conditional probability, that the message of type c is deliv-

ered to the i-th QS from outside at time #, when the network is in a state (k,),
the first time, a service in j-th QS, received a type s, i, j = Ln, c,s=1r;

a,. (k, ¢ ) - the conditional probability that the message of type c, served in the
i-th queuing system at time #, when the network is in a state (k,z), will no longer
be served in any of QS, i=ln, c=1r;

B ( k,t) - the conditional probability that the message of type c, served in
the i-th queuing system at time #, when the network is in state (k,z) for the first
time then receives services in the j-th QS, as a message of type s, i, j=1,n,

¢,s =1,r . It is obvious that

n r

0. (k)+Y Dy, (ki)=1,

j=1 s=1

n r

24 IC(k’t)+Z Zﬂl(;js(kat)zl i,jzl,f’l, C9S:7~

j=1 s=1

According to the formula of total probability we find that:

J=1 s=1

¢ 1c(k>t):(1_f(w)(k>t)) (pICOC +i ipicjs ¢js (kat)J ’ (2)

alc(kat):p100c+z Zpl(;_/s¢js(k_ll(;’t)a (3)

j=1 s=1

Vi )= 0O ()8, + (1= £ D) S S proimtim s (at), ()

/=1 m=1

ﬂ/cjs (kat):zzp/clnﬂl/lm‘/s (k_lic ,t), i,j=1,_l’1, C’S=1>_"7 (5)

=1 m=1
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1,ic = js,
where 6. . - Kronecker delta, which is defined as: §. ., = / , I -
icjs Ic/‘ O,iC;ﬁjS ic

nxr - vector of zero components, except for the number of components r(i —1)+c,

which is equal to 1, i, j =Ln, c,s=1r.
Lemma 1. Probabilities of the states considered network satisfy a system of dif-
ference-differential equations (DDE):

dP(k t) |:i Zr: (/U,c (k,t)u(k,c)a’,c (k, t)+ﬂ(k,f)l70c,c Qic (kat))"'

i=l c=1

ES k) uth, ) B (kat) P(kot) +

i,j=lc,s=1

+iiﬂ'(k_lfwt)u(kw) ( I, )iiPOS/‘WMu( I;c,f)'i‘

i=l c=1 Jj=1 s=1

—_—

r

eSS e e Toes e (k41,0 .0)P(k+1,0, 1)+

i=1 c¢=1

+Zz Hic (k+1/cs )ZZﬂw/s(k'i_llc_ /ss ) (kjs)P(k'i_Iic_ /H ) (6)

i=1 c¢=1 Jj=1 s=1

x>0 . .
where u(x)= {0 * 0" Heaviside function.
X

N >

Proof. In view of the exponential service times of messages, a random process
k(r) = (k,r) is a Markov chain with a countable number of states. The possible tran-

sitions in the state (k,7 + Ar) for the time Az :
1) from the state (k—7,_, r) with the probability

/?'(k_llcit) ( Ic)zz pOSJijwc (k Ilca )At+0(At) =Ln,c=Lr;

Jj=1s=1

2) from the state (k+17,_, ) with the probability

w, k+1 . t)a, (k+1,_ . 0)A+o(Ar), i=Ln, c=Lr;

3) from the state (k +1,, -1, t) with the probability

nor
My (k+ltc’t)zzu(kjs )ﬂlcjs(k-‘r[l(; _[js’ )At+0(At)’ =Ln =1,_I",
j=1 s=1
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4) from the state (k,7) with the probability

i=1 c=1

{iz Catre (e, Verre () Akt)ponre v (hat) )+

Py Zr:,u”(k,t)u(k“),B“,C(k,t)}At+o(At);

i,j=1 c,s=1

5) of the remaining states with a probability o(A?).

Then, using the formula of total probability, we can obtain

P(k,r+Ar)=—P(k,r)[ii(m(k,r)u(k,c)a,c (k.t)+ Ak ) pocic @10 (ko)) +

i=1 c=1

+ i iﬂ]‘gr (kat)u(k/s ):Bjslc (k’t)j|At+

i,j=lc,s=1

n o r

ASS Ak )ull, )P =100 .0)S S Dosss ¥ yre (k= Troat) AL+

i=l c=1 Jj=1s=1

S (k1) (kT )P+ T, A+

i=1 c¢=1

r

+ ZZ pic(k+1 0, 0k, )iz B k41—, 0)Pk+1,,—1 ,,,1)A+0(A0).
i=1 c=1

J=ls=1

Dividing both sides of this relationship by As and taking the limit Az — 0, we
obtain a system of equations for the state probabilities of the network (6).

3. Finding the state probabilities network

Some restrictions are imposed on the investigated model. Let the intensity of the
incoming flow A(k,7) and intensity of service messages of type ¢ in every line of

system S, at time ¢ u,_ (k1) depend only on time #, i=1,n, c¢=1,r. Conditional
probabilities ¢, (k.7), v . (k1), «, (k.1), B, ,, (k1) let also not dependent on
network conditions, i, =Ln, c,s=Lr. In addition, let m; =1, i =Ln, and

suppose, that k, >0, V>0, i=Ln, c=1r. then system of equations (6) takes

the form:
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dP(k H_ {Zz(ﬂw() e O+ 2O pocic 91c €))+

i=l c¢=1
”

£ 2 08 (rﬂ PN+ H) S P~ 0% Yoy v e 04

=1 i=l c=1 j=1 s=1
+z z Hic (t)alc(t) (k+]1L > )
i=l c=1
'ulc t) Z ﬂl(,/s ) (k+[ c _I(/S’t)’ (7)
i=1c=1 j=1ls=1

Denote by ¥, (z,1), where z=(z .z,,), generating func-

oo ZpseresZppoee
tion of the dimension nxr :

0 0 0 0

Y, (z,t)= z z z Z P(Zy1 521y sesZpl oo Zpyst) X

kn=1 k,, =1 k,,1= k,, =1

leflll. Z/ilr . nl Z Z . i i P(k,t)ll[ﬁzlf’; .

k=1 ky, =1 k, =1 k, =1 i=l =1

Multiplying (7) by HHz ;o and summing over all possible values &, from /

m
I=1 m=1

to +w, [ =1,n, we obtain:

L& & & dPD) Pt ke
Y.y .y .y FEO -

k=l ki, =1 kpp=1 kpr=1 di
n o n r
- ZZ(/UIC(t)alc(t)'i_ﬂ“(t)pch Qic (t))+ Z z /u_/'s (t)ﬁjsic (t) X
i=1 c=1 =1 1
i=l ¢ ) ) ) ) i,j=lc,s=
XD LY LYy Pk, O[T +
k=1 kiy =1 kp=1 knp=1 I=1 m=1
n r n r o ) 0 0 .
+/1(t)z Z Z ZPOSjSl//jsic (t) Z Z Z Z ( ’C’t)HHZ L +
i=1 c=1 j=1 s=1 ku=1 kip=1 kpi=1 knr=1 I=1 m=1
n r 0 0 o0 o0
I we O @)Y D> Y P+, )Hsz’"’ +
i=1 c=1 k11=1 k1r=l knl=1 knr =1 I=1 m=1
n r n r
+Z :u/c(t)zz ﬂic‘/s(t)x
i=1 c=1 j=1s=1
J#EIS#C
o0 o0 0 0 n r

DYV SN S S < (1 Sy Svwa | I | I B (8)

ku=1 kip=1 kuyi=1 kp,=1 =1 m=1
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Consider some of the amounts included to the right side of relations (8). Let

S E0=2033SY po @) 33 LS Ple—1 ) [T T2

i=l c=1 j=1 s=1 k=l k=l k=l k=l =1 m=1
Then
S @02 A0YXYYY o v ze XY Y Y Ple-1, ) T[Tz =
i=l =1 j=1 s=1 k=l k=l k=l k=l I=1 m=1
n r n r 0 o0 0 0 n r
SZA0DIDIDIPIN TIIRZNN LIS N Sy SR S L (R B | | B
i=l c=1 j=1 s=1 kit=1 kip=1 kp =1 kypp =1 I=1 m=1
n r n r
_ﬂ’(t)zzzz p()sp W[AI(, () Zic lP (Zat)-
i=1 c=1 j=1 s=1
For the sum
$,@0=3Y e Y Y Y Pl s T[]
i=l c=1 ki=1 kip=1 kp =1 kp,=I I=1 m=1
having:
n r 1 0 0 0
Y,G0=3Y ul)a) = Y3 Y Pl L 0] [[] 2zt =
i=l c=1 Zic k=l k=l ky=l kye=l I=1 m=1
1 0 0 0 0
Y 4@ =3 3 3 Y Pl [ ozt =
i=l c=1 Zic k=l k=l k=l k=l I=1 m=1
s (O) e (1)
i=l c¢=1 ic
_Zz ;ulc(t) lc(t)_ Z P(klla'"aklrakl—l,csoa k1+l,c9“sknr3t)HHZlk]m =
i=1 c=1 Zic kijs=1 I=1 m=1
/=Qwv=/ i
s=1,r s#c
_ZZ/Ulc(t)alc() \P (Z t)’
i=l c=1 IC
because by assumption £, >0, i.e. Py ek, k) 00k ek, 1) =0,

i=Ln, c=Lr.
And finally, for the last sum

S @N=YY u XY A0 3 Y S Pl Lo -1 )] ]2

i=1 c=1 j=ls=1 k1=l k=l k=l k=l I=1 m=1
J#Zi s#c
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we have:
IREDED 3 WAI) W MO
i=1 c=1 Jj=1s=1 ic
X Z z P(klla aklra i— lcaktc +1 k1+lc kj—lySijS _lakj+l,sa~-aknrat)x
kjg=1 js=1
J llfjﬂ ’

kjs—1
« HHZk/mzk/C+l /5 —

=1 m=1
I#i,]
nor nr Zy & ) o 0 nor
=3 )Y B (-2 > Y DL Pt [z =
i=1 c=1 J=1 s=1 Zic k=l k=l k=l k=l =1 m=1
=22 )XY Benl) P, (20)
=1 c=1 Jj=1s=1 Zic
_ZZﬂlc(t)ZZﬂsz(t) = Z (k115 ’klrak—lcao k1+lca 3 nrst)HHZk]m =
i=l c=1 =1 s=1 k js I=1 m=1
' ;/=Q”,;I*‘-’, 1#i
s=1,r,s#c
OMWEG)H) ) L, (2.0).
i=l c¢=1 J=1 s=1

for the same reasons as for the sum of zz(z,t) .

Thus, for the generating function we obtain a homogeneous linear differential
equation

L) Hz (1)t 0+ 20 pracoe )+ X X 1, ()8 0|+

i=1 c=1 i,j=lc,s=1
n.or 1
+2’(t)zzzz pOV_]Sl//jVIc() ic+zzyic(t)alc(t)z +
i=l c=1 j=1 5= i=l c=1 ic
+ 22 XY Biess0) i}‘P (z.0). ©)
i=1c=1 j=ls=1 ic

Its solution has the form

i=1 c=1 i,j=lc,s=1

%(z,o:cn(z)eXp{ j{ {zzw (0 <>p0m¢u<)>+iiuﬁ(r>ﬂm<r)}

+/1(’)anzrlz_:z pOS/vV//s'C +anzr:'u’c(t)a’c(t)%+

i=l c=

—_—

ic

XY, XY 8,02 dt}- (10)
i=1 c=1 j=1s=1 Zie
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We assume that at the initial time the network is in a state

(X g e X 5 X g 5ee0s X gy peens Xy e X, 5 0), %, 0 >0, i=1n, c=Lr,

P(x s X1, X5 e Xy, seees X, X, ,0)=1,
Py kg vk yy kg oKy sk sk ko ek, 0) =0,
VX, 2k, i :I,_n, ¢ =1,7. Then the initial condition for the last equation (10) will
be
n r
k m — k m
W, (2,0) = P(X 1] sers X1 5 X 3] 5eees X2y seees X gl seees Xy ,0)1_[1_12];7 l_ll_[zlﬁ,7 .

I=1 m=1 =1 m=1

Using this initial condition, we obtain

cn(z>:exp{ f[[ii(m(r)a,-c(t)+z@pocw%(t)n S S 0B O]+

i=1 ¢=1 i,j=lc,s=1
n r n r 1
+/1(t)zzzzl pOijl//juc() 1c+zzllulc() 1(,()2 +
i=1 c=1 j=1 s= i=l ¢ ic
5w 0SS 0 2l T o0
i=l c=1 Jj=1 s=1 =1 m=1

Thus, we have the assertion which can be summarized as follows:
Lemma 2. If at the initial moment of time QN is in a state

(11 seer X1y X 21 3ees X 2 pseeis X 1oeees X 1,2 0), X, >0, i = Lin, ¢=1,r, then the express-
ion for ¥,(z,t) can be rewritten as (10), where the function C,(z) has the form (11).
We introduce the following notation:
AW =[A@yde, Mo ()= [p,e@dt, . ()=[A0)g,. (@) dt,
AIC (t):-“ll’ll(, (t)al(, (t)dt’ BIC_[S (t):I/lIL (t)ﬁl(,jé (t)dt’
Vi (=20 ) 0 (12)

Then, taking into account input notation, we obtain that (12) becomes:

%(z,n:epoZi((A,c(t)—A,c(O))wocw @, ()-0,0)+ Y Y (B ()-B,.. ()] +

i=1 c=1 i,j=lc,s=1
n r nor e 1
£ Y Ypg (V0 0=V, 0)z o XX, 0= 4, 0)—+
i,j=lc,s=1 i=1c=1 Z/c
n r z nor
+ z Z (ch‘]\() IL/S( )) - er']7m
i,j=lc,s=1 Z” =1 m=1
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The last expression can be rewritten as:

i=l c=1 j=1 s=1

¥, (2.0 = 4o 1) exp {ZZZZ Poss (Ve 0)= 7,0, 0)z ,L}exp {ZZ (4.0)- 4.(0))- }

x exp ZZIZIZ( ress ()-B ,”3(0)) ST =5 (13)

Zic | 1=l m=1
J#i s#c

r

a<>em{[izx(,xa O+ poce @, (), (0)) +

i=l c=1

+Y (B, ()-B,,. (0))} (14)

i,j=1c,s=1

Transform (13) to a form suitable for finding the state probabilities of the net-

work are expand its member exhibitors in a Maclaurin series. Then the following
statement

Theorem. The expression for the generating function has the form

¥, (z,t)= ao(t)z i i

=0 1,

|| MS

X innnﬁ[“w

wy=0 i=1 c=1j=1s l"]l'w'

X[m(t)—m(ﬂ)]’[ () ()] [Bis()-Bu(0)] " z77). - (15)

where W = Z":w,.

i=1
Proof. From the relations (13) and (14) and Lemma 2 follows that

W, (z,0) = ag(t) ay (z,0) ay (. ) as(z. O [ | T] zia" >
I=1 m=1
where

n r r

>

i=l c=1 j=1 s=1

a, (Z U exp{ pOs‘/s (Y_/'sic (t)_Y_/'sic (O) )ZIC} =

:H H H Hexp{pO‘wS (Y(/sfc (t)_Y/Slc (O) )Zic }:
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Ty e Ve O nee @)

=l c¢=1 j=1 s=1 [ ll'
J#EI s#C
& e [p0v S'(Y'vic(t)_Y'vic(O))Zic]ZI
=2 -2 I —+ -
=0 Ip=0 i=1 c=1 j=1 s=1 11’
J#i s#cC
0 0 [ 11

...
-3 Zpom POrann 2y 02

P LM, I[TITIIII [Y”,c(t)—YA,»S,C (0)]l' >
1= n=

)
0o
—_
[N
~
~
(¢}
4
e
—
M=
/|—\
>
S
=
~
|
>
s
(=]
~
~
. (N—
: I
—=
—~
[¢]
4
e
—_—~
N |_
—_
>
S
=
~
|
>
S
S
~
~
I

~dn
. nr °
q1=0 qp
n r n r
03(2 f)=eXP[ZZ Z Z (BIC/S'( Blc;v(o ) HHHHeXP{ (BIC/.S'(Z)_Bfo.V(O))}=
i=le=1j=1s=1 ic i=lc=1j=1s=1 Zic
J#is#c J#EIS#C
=1£[ ﬁ ﬁ ﬁ i I:(Blc‘/s(t)_Blc‘/s((:))Z‘/s Zic - ]W’ _
i=1 c=1 j=1 s=1 w; Wi
J#I s#C

. X

wi1=0  w,=0 wl’ Wn!

Witwy + AWy Wl twWo Wy “W1...,"W%n _
XZ 11 Znr Z 1 Zopr =
Wi

n r n r

181 [H TT (B ()= By (o))j
g & i=le=1\ j=ls=1 W —w, W —w, _W—w,
=2 X Y \ 1 Iy R

wyp=0 w, =0 Wyt Wy,

Multiplying a,(t), a(z,1), ay(z,t), as(z,t) and [] [] 2/, we obtain the

=1 m=1
expression for the generating function of the form (15).

LW wy,
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4. Example

Let the intensity of the input and services of messages have the form A(#) =1z,

,Ll,c(t):,U,c(COSf-i-l), i=lLn, c=Lr. In this case A(t)=§t2, A0)=0,

M; )=y, (sint +t), M; . (0)=0, i=1Ln, c=1r. Assume that the probability
of the messages to join the queue at the time ¢ has the form f ) (f)=1-¢""“".
®,.(0)=0,Y,,,00)=0, A,.(0)=0, B,.,,(0)=B,.,,(0)=0, i,j=Ln, c,s=1Lr.
Conditional probabilities go,-c(t), % ,-C‘/S(t), a,c(t) and ﬂ,c‘]s(t) are found from

(2) - (5). Solving a system of linear equations (2-5) in the package Mathematica,
you can get their analytical solutions.
Expression (15) takes the form:

» » © © © o n r n r A li /uicq’-FWip(l)lg'-
Y, (z,t)=ay(t) ) ... =/«
(&) =an( )112;6 1,,20 E‘o q,,z=0 le=0 w,,z=0 i=1 c=1 j=1 s=1(2) [ li'q;'w;!
x [w‘,‘s,‘c O F = [y dt ] i [a () (sint+1 )~ [, () (sint +1)dt ] " x
X [ B () (sint +1)— f By (0 (sint +1) dt] i g Aklima ) (16)

Suppose that we need to find, for example, the probability of state P(l,1,...,1,7),

ie. k,.,=1, i=1n, c=1r. It is the coefficient of z|,...,Z,, .00 Z 1 ».00s 2, IN
the expansion of ¥, (z,¢) in multiple series (16), so the degree for z,, must satisfy

the relation x, +/, —¢q, +W =1, i=1,n.Then

] Xi+li+ Y wi-1 [
0 0 n r n r VAL ;u:c] ,]:1] porw
2

POL.10=a®Y .S Y T
h=0 [,=0 wi=0 w,=0 i=l c=1 j=1 s=1
LY X +0+> w, =1 |lw,!
J=1
J#i

x,-+/,-+2 W‘,'—l

x[t//js,c(t)tz—_[t//;s,c(t)tz dt]l'[a,c(t)(sint+t)—_[a,'c(t)(sint+t)dt] o
x,'+l,+W—1)

x [ B () (sint +1)= [ B, (1) (sint +1) dt] "oz,

Let n=9, number of types of messages » = 6. Suppose also that the intensity
ﬂ«(t):ﬂ,t, /1:10, ,U,L(l‘)=,u,c(COSl‘+1), /,111210, /122:3, /,133:2, /144:1,
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Hs1 =05, pgy =1, pr75=10, p76=2, pgs=3, o1 =03, p19y =06, py3=20,
U o4 =13, other intensity messsages service equal to zero. The transition probabili-
ties between QN of messages are: poio; =1, Poros =1, Posoz=1, Poaos =1,
Pus1 =03, puo =02, p1oy=0.1, po3=04, pi1os=0, Py =01,
P2201=02, pPry9y =03, Piy93=04, p2ygs =0, p3375=0.1, p3336=0.1,
P3391 =03, P3390 =04, pPi3393=0, p3394=0.1, pyso1 =07, pyse,=0.1,
P4493 =0, Pusos =02, psin =1, peraz =1, prsiz=1, presz =1, pgere =1,
Poi1 =05, P92y =05, po333=0.5, posss =05, po3o3=0.5, posos =0.5,
other transition probabilities are 0. Consider the time period 7 € [0, 7], T =10.

The expression for the time-dependent probability of the state in network sys-
tems obtained by computer using the mathematical calculations package Mathe-
matica. Figure 1 shows a graph of the probabilities depending on the time ¢.

P(LL... LD

1

7x107°
6x107
5%107°
4x107°

3x107°

0 2 4 6 8 10 t

Fig. 1. The chart of the probability of the state P (1,1,...,1, ¢)
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