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Abstract. This paper contains an investigation of an open exponential network with bypass 

of systems of multi-type messages with absolute priority in transient behavior. Messages 

with priority received by the node with the probability depending on the state system and 

the type of incoming messages are for service, forcing messages that are serviced or instant 

changes in the following system, and can leave the network. Network settings: the intensity 

of the incoming flow and the intensity of service of different types of messages in single- 

-line systems and the conditional probabilities of transitions of messages between the sys-

tems are dependent on the time. We obtained a system difference-differential equations for 

the state probabilities of the network. To find the state probabilities of the network in the 

transitional behavior applied a methodology based on the use of the apparatus of multi-

dimensional generating functions. 

 

Keywords: multi-type messages bypass of systems, absolute priority, the conditional prob-

abilities of transitions, the system of difference-differential equations, probability states, 

generating function 

1. General information 

Results of investigations for an open network with multi-line exponential 

queueing systems (QS) with one-type messages bypass of systems in transient be-

havior were presented in [1]. In this paper, such a network was investigated, but 

with multi-type and absolute priority of incoming messages. If the message is re-

ceived with an absolute priority in the QS, it immediately begins to serve, cutting 

the duration of their service request found there. The displaced thereby shall be 

returned to the top of the turn and the expected continuation of service (Priority 

Service), goes immediately into the next system or leaves the network. 

In the information and telecommunication systems and networks messages with 

the absolute priority concerned to the operator commands Queueing Networks 

(QN) with bypassing of messages in the queueing systems can be used in model-
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ling, when a user sends a request to a system service, estimates how much time it 

will have to wait, or how many users requests in front of its in line, and depending 

on this evaluation remains to expect or forwards its request to another system. Such 

a situation may arise in the service point or points for communities. 

As mentioned earlier in [1], we consider an open network of exponential QN 

with an arbitrary structure consisting of n QS 
n
SSS
  2  1 

 , . . . , , . with some probabil-

ity, join the queue queueing, and with an additional probability to move immedi-

ately according to the matrix of transition probabilities to another QS or leave the 

network. The probability of joining the QS depends on the state of the QS and the 

number of QS with which the messages are sent to this QS. 

The state of the network will be understood as a vector of dimension rn× : 

 ), ,,...,,,...,,...,,,,...,,() , ()( 
 2  1  2 2 2 1 2  1121 1
tkkkkkkkkktktk

rnnnrr
==  (1) 

where 
ci

k    – the number of messages of type с at the moment t  in the system i
S , 

∑
=

=

r

c

cii
kk

1

   
 , ni  ,1= . Let 

i
m  - number of identical service lines in the QS 

i
S , 

ni  ,1= . The network receives a simple flow of messages with intensity ( )tk,λ , i.e. 

the time interval )  , [ ttt ∆+  the network receives a message with a probability 

)(  ) ,( tottk ∆+∆λ . If at the time t  of service on the line i -th QS is located  mes-

sage, at the range ),[ ttt ∆+  of its services will end with a probability 

)( )  ,  (   tottk
ci

∆+∆µ , where ( )tk
ci

,   µ  - the intensity of service of messages or type 

с at every line of system 
i
S  at the moment time t, ni ,1= , rc ,1= . In i-th QS the 

message of type с, independently of other of messages receives, with a probability 

cic
p

   0 
, ni ,1= , rc ,1= . The message sent to this QS from the external environment 

at moment time t, having type с, when the network is in a state ( )tk , , with a prob-

ability )  ,  (  
 )   (

tkf
ci

, depending on the state of the i-th QS and type of its message, 

instantly becomes a service or joins the queue, if there are any, and with probability 

)  ,  (  1
 )   (

tkf
ci

−  does not join the queue and immediately bypasses the system. Its 

behavior in the future, such as if it is served by this QS and has type с, i.e., its time 

of service with a probability of 1 is equal to zero. Message of type с with having 

completed service in the i-th QS, independently of other of applications instantly 

sent to the j-th and the QS is the message of type s, with probability 
sjci

p     ; with 

probability 
cci

p
 0   
 it leaves the network 1

1 1

0 =+∑ ∑
= =

n

j

r

s

ccisjci pp         , nji ,1 , = , 

rsc ,1 , = . 
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2. The system of difference-differential equations for the probability 

of network states 

Let: 

− ( ) k , t 
 i c
ϕ  - the conditional probability, that the message of type c is delivered 

to the i-th QS at time t, when the network is in a state ( )tk , , will not be serviced 

by any of the QS, ni ,1= , rc ,1= ; 

− ( ) k , t ψ
 i c j s 

 - the conditional probability, that the message of type c is deliv-

ered to the i-th QS from outside at time t, when the network is in a state ( )tk , , 

the first time, a service in j-th QS, received a type s,
 nji ,1 , = , rsc ,1 , = ; 

− ( ) k , t  α 
i c

 - the conditional probability that the message of type c, served in the 

i-th queuing system at time t, when the network is in a state ( )tk , , will no longer 

be served in any of QS, ni ,1= , rc ,1= ; 

− ( ) k , t β 
 i c j s 

 - the conditional probability that the message of type c, served in 

the i-th queuing system at time t, when the network is in state ( )tk ,  for the first 

time then receives services in the j-th QS, as a message of type s, nji ,1 , = , 

rsc ,1 , = . It is obvious that 

( ) ( ) 1,,
1 1

=+∑ ∑
= =

n

j

r

s

sjcici tktk           ψϕ , 

( ) ( ) 1,,
1 1

=+∑ ∑
= =

n

j

r

s

sjcici tktk            βα  nji ,1, = , rsc ,1 , = . 

According to the formula of total probability we find that: 

 ( ) ( )( ) 

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


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 ∑ ∑
= =
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n
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0 ),(),(                       ϕα ,  (3) 
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1 1

),(),(                   ψβ , nji ,1, = , rsc ,1 , = , (5) 
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where 
sjci     δ  - Kronecker delta, which is defined as: 





≠

=
=

jsic

jsic

sjci
 ,0

, ,1

    δ ,    ciI  – 

rn× - vector of zero components, except for the number of components cir +− )1( , 

which is equal to 1, nji ,1, = , rsc ,1, = . 

Lemma 1. Probabilities of the states considered network satisfy a system of dif-

ference-differential equations (DDE): 
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where ( )




≤

>
=

0,0

0,1

x

x

xu  - Heaviside function. 

Proof. In view of the exponential service times of messages, a random process 

),()( tktk =  is a Markov chain with a countable number of states. The possible tran-

sitions in the state ),( ttk ∆+  for the time t∆ : 

1) from the state ) ,(    tIk
ci

−  with the probability  

( ) ( ) ( ) ( )tottIkpkutIk
n

j

r

s

cicisjsjscici ∆+∆−− ∑∑
= =

                          

1 1

0 ,, ψλ , ni ,1= , rc ,1= ; 

2) from the state ) ,(    tIk
ci

+  with the probability 

( ) ( ) )(  ,   ,             tottIktIk
cicicici

∆+∆++ αµ , ni ,1= , rc ,1= ; 

3) from the state ( )tIIk
sjci
 ,      −+  with the probability 

( ) ( ) ( ) )(    ,         , 

1 1

                    
tottIIkkutIk

n

j

r

s

sjcisjcisjcici
∆+∆−++ ∑ ∑

= =

βµ , ni ,1= , rc ,1= ; 
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4) from the state ),( tk  with the probability 

( ) ( ) ( ) ( ) ( )( )

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5) of the remaining states with a probability
 

)( to ∆ . 

Then, using the formula of total probability, we can obtain 
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Dividing both sides of this relationship by t∆  and taking the limit ,0→∆t  we 

obtain a system of equations for the state probabilities of the network (6). 

3. Finding the state probabilities network 

Some restrictions are imposed on the investigated model. Let the intensity of the 

incoming flow ( )tk,λ  and intensity of service messages of type с in every line of 

system 
i
S  at time t ( )tk

ci
 ,   µ  depend only on time t, ni ,1= , rc ,1= . Conditional 

probabilities ( )tk
ci

,   ϕ , ( )tk
sjci

 ,     ψ , ( )tk
ci

 ,   α , ( )tk
sjci

 ,     β  let also not dependent on 

network conditions, nji ,1, = , rsc ,1, = . In addition, let 1=
i

m , ni ,1= , and 

suppose, that 0   >ci
k , 0>∀t , ni ,1= , rc ,1= . then system of equations (6) takes 

the form: 
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Denote by ) ,(  tz
n
Ψ , where ) , . . . , , . . . , , . . . ,(

    1    1  1 1 rnnr
zzzzz = , generating func-

tion of the dimension rn× : 
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 and summing over all possible values    mlk  from 1 
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Consider some of the amounts included to the right side of relations (8). Let 
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we have: 
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for the same reasons as for the sum of ∑2
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Thus, for the generating function we obtain a homogeneous linear differential 
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We assume that at the initial time the network is in a state  
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Thus, we have the assertion which can be summarized as follows: 
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The last expression can be rewritten as: 
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Transform (13) to a form suitable for finding the state probabilities of the net-

work are expand its member exhibitors in a Maclaurin series. Then the following 

statement 
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expression for the generating function of the form (15). 
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4. Example 

Let the intensity of the input and services of messages have the form tt λλ =)( , 

( )1cos)( += tt cici       µµ , ni ,1= , rc ,1= . In this case 2

2
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Conditional probabilities ( )t
ci  ϕ , ( )tsjci     ψ , ( )t

ci    α  and ( )tsjci     β  are found from 

(2) - (5). Solving a system of linear equations (2-5) in the package Mathematica, 

you can get their analytical solutions. 
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Let 9=n , number of types of messages 6=r . Suppose also that the intensity 

tt λλ =)( , 10=λ ; ( )1cos)( += tt
cici       µµ , 1011 =  µ , 322 =  µ , 233 =  µ , 144 =  µ , 
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5.015 =  µ , 126 =  µ , 1057 =  µ , 267 =  µ , 368 =  µ , 3.019 =  µ , 629 =  µ , 2039 =  µ , 

13
4 9 
=µ , other intensity messsages service equal to zero. The transition probabili-

ties between QN of messages are: 11910 =    p , 12920 =    p , 13930 =    p , 14940 =    p , 

3.01511 =    p , 2.01911 =    p , 1.02911 =    p , 4.03911 =    p , 04911 =    p , 1.02622 =    p , 

2.01922 =    p , 3.02922 =    p , 4.03922 =    p , 04922 =    p , 1.05733 =    p , 1.06833 =    p , 

3.01933 =    p , 4.02933 =    p , 03933 =    p , 1.04933 =    p , 7.01944 =    p , 1.02944 =    p , 

03944 =    p , 2.04944 =    p , 11115 =    p , 12226 =    p , 13357 =    p , 13367 =    p , 16768 =    p , 

5.01119 =    p , 5.02229 =    p , 5.03339 =    p , 5.04449 =    p , 5.03039 =    p , 5.04049 =    p , 

other transition probabilities are 0. Consider the time period [ ]Tt   ,0∈ , 10=T . 

The expression for the time-dependent probability of the state in network sys-

tems obtained by computer using the mathematical calculations package Mathe- 

matica. Figure 1 shows a graph of the probabilities depending on the time t . 

 

 
Fig. 1. The chart of the probability of the state ),,...,,(  tP 111  
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