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Abstract. We consider solving the Cauchy problem with an abstract linear evolution equa-

tion by means of the Generalized Method of Lie-algebraic discrete approximations. Dis-

cretization of the equation is performed by all variables in equation and leads to a factorial 

rate of convergence if Lagrange interpolation is used for building quasi representation of 

differential operator. The rank of a finite dimensional operator and approximation proper-

ties have been determined. Error estimations and the factorial rate of convergence have 

been proved.  
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Introduction  

A wide variety of important environmental processes, problems of techniques, 

physics are described by ordinary differential equations (ODE) and partial differen-

tial equations (PDE). Regardless of powerful mathematical tools, very few of them 

can be solved exactly. Therefore there is a need for application of either the numer-

ical methods or the analytical-numeric methods. One of these approaches is the 

method of Lie-algebraic discrete approximations [1]. This method was used by 

Calogero in 1983 for solving the eigenvalue problem concerning differential equa-

tions for spectral problem [2]. Lie algebras and their finite dimensional quasi repre-

sentations appeared to be very useful in the  method devised. Extension of this 

method for solving PDE was proposed in 1988 and was named as “Lie-algebraic 

discrete approximation” in [1].  

Some history of development of Lie-algebraic method can be found in [3, 4]. 

The main problem analyzed in these articles is the Cauchy problem for linear  

evolution equation [3]: 
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where B  denotes some functional Banach space. 
 

Similarly, as in Calogero’s method, the Heisenberg-Weyl algebra 

{ }
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Using q-dimensional Lagrange interpolation scheme problem (1) is reduced to 

the Cauchy problem in the following form:   
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where ( )nK  denotes finite dimensional quasi representation of differential opera-

torK , and ( )nB  denotes finite dimensional space of approximations. System (2) is 

solved by means of Euler’s or Runge-Kutta’s method [3]. 
 

Since reduced problem (2) is solved making use of some numerical algorithm 

the rate of time convergence is constrained by the convergence rate of the method 

based on, Lie-algebraic discrete approximations for spatial variables rate of con-

vergence is factorial [1-3]. 

By means of the Generalized Method of Lie-algebraic discrete approximations 

proposed in this paper, convergence rate for the time variable becomes factorial. 

Moreover, we construct a numerical scheme and prove the convergence of the 

proposed generalization. We first illustrate the method having applied it to one  

dimensional case and later we construct its generalization for the multidimensional 

case. 

1. Cauchy problem and operator equation problem formulation 

We consider a bounded domain : ( , )a b RΩ = ⊂ , time limit T < +∞  and cylinder 

(0, ]
T

Q T=Ω× . We assume that linear differential operator K  is a formal  

polynomial of elements from the Lie algebra { }, / ,1x x∂ ∂  and can be represented as 
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the Cauchy problem 
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where ( )x Vϕ ϕ= ∈  denotes initial conditions and ( , )f f x t C= ∈  represents inter-

nal sources. 
 

According to [5], we introduce substitution ( , ) ( , ) ( )u x t v x t xϕ= +  into (3), 

which leads to considering the auxiliary Cauchy problem with homogeneous initial 

condition.  

 

0

( , ) ,

, ( , ) ,

0.

t T

t

find function v v x t V such that

v Kv K f x t Q

v

ϕ

=

 = ∈


= + + ∀ ∈
 =

 (4)  

The solution of problem (4) we seek in the subspace of such functions which are 

homogeneous at the initial moment of time: { }
0
0

t
B v V : v

=

= ∈ = . 

Denoting the structure elements in (4) by  

 : / , ( )
T

A t K f K f C Qϕ= ∂ ∂ − = + ∈ɶ , (5) 

we obtain a problem for operator equation: 

 
for given operator A : B C and element f C

find element v B such, that Av f .

 → ∈


∈ =

ɶ

ɶ
 (6)  

The Cauchy problem has been reduced into the problem for the  

operator equation. This operator equation we intend to solve by means of the  

Generalized Method of Lie-algebraic discrete approximations and prove its  

convergence. 
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2. Numerical scheme and unique of discrete solution 

Let 
x
n  denote the count of nodes in domain Ω  and 

t
n  denotes count of nodes 

in interval [0 ],T . Set of nodes we denote 
,T h
Q . 

For every variable we construct a set of Lagrange polynomials, which satisfy 

property ( )
j i ij
l x δ=  and ( )

j i ij
l t δ= , where ijδ  denotes Kronecker symbol. 

According to the Weierstrass approximation theorem, the set of polynomials 

with real-valued coefficients is dense set in the space of continuous real-valued 

functions. Choosing { }
2

( ) ( )
t
n

j
j

l t l t
=

=  we obtain system of polynomials without  

polynomial associated with initial moment of time. Its easy verifies that 

0

2, , ( ) 0
t j

t
j n l t

=

∀ = =  and ( )l t B∈ , moreover basis functions ( ) ( )l t l x B⊗ ∈  are 

linearly independent, hence system of these functions create basis for approxima-

tion spaces ,

h h
B B C C⊂ ⊂ . Thus, we seek the solution as a Lagrange interpolation 

in the following form  
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x t
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h j j j

j j

v x t v l x l t v l t l x

= =

= = ⊗∑∑ , (7) 

where h  denotes the discretization parameter, 
t
j  and 

x
j  are indexes of nodes by 

corresponding variables, j  denotes the unique number of the node 

( )1t x x
j j n j= − +  and v  denotes the set of values { }

1

x t

x

n n

j
j n

v v
= +

= . 

 

Substitution (7) into equation (6) leads to 
h

Av f= ɶ  and further using of calcula-

tions yields  

 ( )( )( ) ( ) ( ) ( )
h h

l t l x l t K l x v f′ ⊗ − ⊗ = ɶ . (8) 

Taking 
xx

ni ,1=  and 
tt
ni ,2=  in (8) we obtain a system of linear algebraic equa-

tions  
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x t
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h t x t x
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x t
h i i x x t t
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obtain discrete formulation of operator problem  

 
:
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h h h h h

h h h h h

for given operator A B C and element f C

find element v B such that A v f

 → ∈


∈ =

ɶ

ɶ
 (10)  
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where matrices of corresponding finite dimensional quasi representations have 

been built upon these rules 

 
, , , ,

( ), ( )( ), ( ), ( )
t ij j i x ij j i t ij j i x ij j i

Z l t K Kl x I l t I l x′= = = = . 

According to theorem determining the rank of finite dimensional quasi repre-

sentations [4] we obtain 

( ) ( ) ( ) ( )1, 1, , .
t t t t x x x x

rank Z n rank I n rank K n k rank I n= − = − = − =  

Using property of tensor product we verify that 
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t x x t t x t x

rank Z I n n rank I K n n k⊗ = − ⊗ = − −  

The rank of whole matrix 
h

A  remains an open question, and further lemmas 

give an answer to this question. 
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inverse matrix exists because of the existence of finite expansion  
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However matrix has ( )1
x t
n n −  rows and columns and has inverse matrix, 

therefore it has full rank: ( ) ( )1
1

t x t x x t
rank I I Z K n n

−

⊗ − ⊗ = − . 

Using these lemmas we can prove the next theorem. 
 

Theorem 1. The rank of finite dimensional quasi representation 
h
A  of operator A  

has full rank and its rank is ( )1
x t
n n −  and there exists a unique solution of discrete 

problem (10). 

Proof. Let us rewrite ( )( )1
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A Z I I K Z I I I Z K
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= ⊗ − ⊗ = ⊗ ⊗ − ⊗ . 

However ( ) ( )1
t x x t

rank Z I n n⊗ = −  and due to Lemma 2 ( )1

t x t x
rank I I Z K

−

⊗ − ⊗ =  
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matrix has full rank then a unique solution of the problem (10) exists there. 

3. Approximation properties of numerical scheme 

According to construction of finite dimensional quasi representation of the  

operator it can be verified that ( ) ( )( ) ( )
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The residual of Lagrange interpolation polynomial can be written in the follow-

ing form [8]: 
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Let us denote α  the highest order of derivative in operator by variable x, and 

a
α
  denotes coefficient standing with highest order of derivative by variable x. 

 

Theorem 2. Finite dimensional quasi representation 
h
A  of the operator A   

approximates the operator A  on element v B∈  and error estimation of approxima-

tion has the following form:   
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1

1
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1 1
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  (11) 

Proof. Since the norm of space 
h

C  is vector norm then according to the construc-

tion of finite quasi representation 
h
A  of operator A  it can verified that  
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I
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Acting with operator A  on residual of Lagrange polynomial we obtain  
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and finally (11) can be obtained. 



A. Kindybaliuk 58 

4. Convergence and error estimations 

According to the Kantorovich convergence theorem [9] of abstract approxima-

tion scheme 
0

lim 0
h Bh

v v
→

− =  holds if  

1. there exists a unique solution of equation Av f= ɶ , 

2. for all operators approximating 
h
A  operator A  exist inverse bounded op-

erators, 

3. operator approximates operator A  on element v B∈ : 
0

lim 0
h

h Ch

Av A v
→

− = . 

The first requirement can be easily verified and the third requirement has been 

already satisfied in Theorem 2, thus we should prove the second requirement.  
 

Theorem 3. If finite dimensional quasi representation 
h
A  of operator A  has a full 

rank and is the same as finite dimensional subspace 
h

B  then the bounded inverse 

operator exists, i.e.: 

 
1 1

, 0, :
h h h
A M A A M

− −

∀ ∃ > ∃ ≤ < +∞ . (12) 

Proof. Although the norm satisfies the axiom of positivity, we obtain 

( )0,
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h hC
A v v D A≥ ∀ ∈  and 0 0
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A v A v= ⇔ = . 
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h
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A v = , then 0

h
h C
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h
B

v ≠  it is possible if det 0
h
A =  and 
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h h

rankA B< . However, 
h
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h
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v 0=  only. Thus { }( ) \ 0 : 0

h h
h B h C

v D A A v∀ ∈ > . Since values 0
h

h C
A v >  and 

0
h

B
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h
h B

v D A∀ ∈  then there exists such con-

stant 0µ >  such that 
hh
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A v vµ≥ .  

According to the theorem of existence of bounded inverse operator [10] setting 

1
0M

µ
= >  we obtain (12). 

 

Theorem 4. If 
0

lim 0
h

h
Ch

f f
→

− =
ɶ ɶ  holds and conditions of theorems 1, 2, 3 are  

satisfied then 
0

lim 0
h

h Bh

v v

→

− =  and 
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  (13)  
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Proof. Let us consider 
h

h B
v v− : 

( ) ( )1 1

h hh

h h h h h h hB CB

v v A A v v A A v v
− −

− = − ≤ −  

Since the inverse operator is bounded (12) then  

( ) ( )1

h h

h h h h h
C C

A A v v M A v v
−

− ≤ −  

Let us estimate ( )
h

h h
C

A v v− : 
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h h hh

h h h h h h h hC C CC
A v v A v Av Av A v A v Av Av A v− = − + − ≤ − + − . 

Since Av f= ɶ  and 
h h h
A v f= ɶ , we obtain  

( )
hh h

h h h hCC C

A v v A v Av f f− ≤ − + −ɶ ɶ . 

Finally we obtain ( )
h h

h

h h hB C C

v v M A v Av f f− ≤ − + −ɶ ɶ and 

( )
0 0 0

lim lim lim 0,
h h

h

h h hB C Ch h h

v v M A v Av f f
→ → →

− ≤ − + − =ɶ ɶ  

Thus 
0

lim 0
h

h Bh

v v

→

− = . 

However 
h
fɶ  is Lagrange approximation of fɶ , error estimation of 

h

h
B

f f−ɶ ɶ  

has the following form: 
1 1

1 1

t x
t x

t x
h

n n
n n

h n n
B

t x

f f
f f

n nt x
∞ ∞

   ∂ ∂
− ≤ +   

− −∂ ∂   

ɶ ɶ
ɶ ɶ . 

Since (11) and 
1

1

t
n

t
n

 
 

− 
 tends to zero faster than 

1

1

1

t
n

t
n

−

 
 

− 
 when 

t
n →∞ , 

then neglecting terms with 
1

1

t
n

t
n

 
 

− 
 and 

1

1

x
n

x
n

 
 

− 
 yields to error estimation (13). 

5. The Cauchy problem for evolution equation in several dimensions 

The results obtained in previous sections can be generalized in natural way for 

a multidimensional case. Let us consider q-dimensional bounded domain 
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1 1 2 2
: ( , ) ( , ) ... ( , )

q

q qa b a b a b RΩ = × × × ⊂ , time limit T < +∞  and cylinder 

(0, ]
T

Q T= Ω× . Let 
i

diamΩ  denote the length of the range ( ),

i i
a b . We assume 

that linear differential operator K  is formal polynomial of elements from Lie alge-

bra { }
1

, / ,1
q

j j
i
x x

=

⊕ ∂ ∂  [3, 10]. Let 
i
α  denote the highest derivative by variable 

i
x  

and 
,i

a
α
 denote coefficient standing by the highest derivative by variable 

i
x . 

Let us consider Banach spaces 1

1

,..., ,1

,..., ,
( ) ( ), ( )d

d
x x t T TT

V C Q C Q C C Q
α α

= ∩ =  and 

formulation of the Cauchy problem with linear evolution equations [11] is given 

below  

 

1

1

0

( , ..., , ) ,

, ( , ..., , ) ,

,

q

t q T

t

find function u u x x t V such that

u Ku f x x t Q

u Vϕ
=

 = ∈


= + ∀ ∈


= ∈

   (14)  

where 
1

( ,..., )
d

x x Vϕ ϕ= ∈  denotes initial conditions and 
1

( ,..., , )
q

f f x x t C= ∈  

represents internal sources. 

According to [5] we introduce substitution 

 
1 1 1

( , ..., , ) ( , ..., , ) ( ,..., )
q q q

u x x t v x x t x xϕ= +  

into (14) which leads to considering an auxiliary Cauchy problem with homogene-

ous initial condition: 

 

1

1

0

( ,..., , ) ,

, ( , ..., , ) ,

0.

q

t q T

t

find function v v x x t V such that

v Kv K f x x t Q

v

ϕ

=

 = ∈


= + + ∀ ∈


=

            (15)  

The solution of problem (15) we seek in the subspace of such functions which 

are homogeneous at initial moment of time: { }0
: 0

t
B v V v

=

= ∈ = . 

Denoting structure elements in (4) by  

 : / , ( )
T

A t K f K f C Qϕ= ∂ ∂ − = + ∈ɶ , (16) 

we obtain the problem for operator equation: 

 
:

, .

for given operator A B C and element f C

find element v B such that Av f

 → ∈


∈ =

ɶ

ɶ
  (17)  
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The Cauchy problem has been reduced into problem for operator equation. This 

operator equation we solve by means of Generalized Method of Lie algebraic  

discrete approximations.   

6. Approximation properties and convergence in multidimensional case 

The numerical scheme for problem (17) is built using dimensional Lagrange  

interpolation. Let 
i
x

n  denote the count of nodes by variable 
i
x .  

Discrete problem is formulated below 

 
:

, .

h h h h h

h h h h h

for given operator A B C and element f C

find element v B such that A v f

 → ∈


∈ =

ɶ

ɶ
   (18) 

Theorem 5. The rank of finite dimensional quasi representation 
h
A  of the operator 

A  has a full rank and its rank is ( )
1

1
i

q

t x

i

n n

=

− ∏  and there exists a unique solution of  

the discrete problem (18). 

Proof. Using property that finite dimensional quasi representation 
h
K  of operator 

K  is nilpotent matrix. Similarly, as in proof of Theorem 1, we obtain that finite 

dimensional quasi representation has a full rank and hence a unique solution of  

discrete problem (18) exists there. 
 

Theorem 6. Finite dimensional quasi representation 
h

A  approximates operator 

A on element and error estimation of approximation has the following form   

  

1
1

,

1 0

1 1
ln ln( )

1 1

x iit
xit i

it xh i

i

nn nn q

h t i xn nC
i kt x

v v
Av A v n a n k

n nt x

α

α

α

−
−

−

= =
∞ ∞

     ∂ ∂ − ≤ + −       − −∂ ∂     
∑ ∏  . 

  (19) 

Proof. Using formula of dimensional Lagrange interpolation and acting by operator 

A  on residual yields (19). 
 

Theorem 7. If 
0

lim 0
h

h
Ch

f f
→

− =
ɶ ɶ holds and conditions of theorems 3, 5, 6 are satis-

fied then 
0

lim 0
h

h Bh

v v

→

− = and  

   ( ) ( )
1

1
1 1

,1 1

1 0

ln ln( )
xit i

x it i

it xt xih i

nn q nn

h t i xn nn nB
i k

v v
v v M n a n k

t x

α
α

α

−
−−

− −

= =
∞ ∞

   ∂ ∂
  − ≤ + −   ∂ ∂   

∑ ∏ .  

   (20)  
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Proof. According to the Kantorovich convergence theorem of abstract approxima-

tion scheme all requirements are satisfied, thus similarly to theorem 4 using ine-

quality 
h h

h hB C
v v M Av A v− ≤ − and neglecting terms 

1

1

t
n

t
n

 
 

− 
 and 

1

1

1

xi

i

q
n

x
i

n

=

   
   −   

 

we obtain (20). 

Conclusions 

Thus, in this paper we present a Generalized Method of Lie algebraic discrete 
approximations for solving the Cauchy problem for linear dynamical systems. The 
key finding of this research is the opportunity to provide a factorial rate of conver-
gence by all variables in the equation, including time variable. The Cauchy prob-
lem for differential equations has been reduced to a system of linear algebraic 
equations, which generalize the way of solving ODE and PDE.  

Moreover, in the case of linear problem the introduced substitution allows for 
the rapid solving of the problem when initial data or internal sources have been 
changed but coefficients of differential operator in the problem remained constant. 
This is possible by keeping in memory the inverse matrix and multiplying it on the 
vector which represents initial data or internal sources. 
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