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Abstract. The paper is devoted to an application of the immune algorithm and the finite  

element method for generation of 3D structures using two different types of parameteriza-

tion and comparing the final results. The shape, topology and material of the structure are 

generated for optimization criterion like minimum of the mass of the structure. Two differ-

ent interpolation functions like: multinomial interpolation and interpolation based on the 

neighbourhood of elements are used. The purpose of these procedures is appropriate selec-

tion of mass densities. 
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Introduction 

Immune methods have been applied in mechanics, especially in structural opti-

mization [1]. The principle of operation of these methods is based on the mecha-

nism discovered in biological immune systems.  

The artificial immune systems (AIS) are developed on the basis of a mechanism 

discovered in biological immune systems [2]. An immune system is a complex  

system which contains distributed groups of specialized cells and organs. The main 

purpose of the immune system is to recognize and destroy pathogens - fungi,  

viruses, bacteria and improperly functioning cells.  

The artificial immune systems take only a few elements from the biological 
immune systems [3-5]. The most frequently used are the mutation of the B-cells, 
proliferation, memory cells, and recognition by using the B- and T-cells. The pre-
sented approach is based on the Wierzchon’s algorithm [6], but the mutation opera-
tor is changed. The Gaussian mutation is used instead of the nonuniform mutation 
in the presented approach. At the beginning of the AIS the memory cells are  
created randomly. They proliferate and mutate creating B-cells. The number of 
clones created for each memory cell is determined on the basis of the value of ob-
jective function of memory cells. The objective functions for B-cells are evaluated. 
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The selection process exchanges some memory cells for better B-cells. The selec-
tion is performed on the basis of the geometrical distance between each memory 
cell and B-cells (measured by using design variables). The crowding mechanism 
removes similar memory cells. The similarity is also determined as the geometrical 
distance between memory cells. The process is iteratively repeated until a termina-
tion criterion is fulfilled.  

The main advantage of the immune algorithm is the fact that this approach does 
not need any information about the gradient of the fitness function and gives 
a strong probability of finding the global optimum. The main drawback of this  
approach is a lengthy process of the calculations. In order to eliminate this disad-
vantage the hybrid immune algorithm can be used to speed up the computations 
[7]. The fitness function concerns the minimization of mass of the structure with 
constraints imposed on equivalent stresses and resultant displacements of the struc-
ture. 

More recently, other bio-inspired approaches, alternative to AIS [8], as the Par-
ticle Swarm Optimizers (PSO) [9, 10] or the Evolutionary Algorithms (EA) have 
gained popularity [11, 12]. 

Two types of interpolations are used. The purpose of these procedures is appro-
priate selection of mass densities. The first of them is the multinomial interpola-
tion, the other the interpolation based on the neighbourhood of elements. 

After optimization the procedure which smoothes an external and internal 
boundary of a three-dimensional structure is used. 

In the present work the original concept [13-16] of a immune generation of 
shape, topology and material properties of 3D structures is developed.  

As a tool for solving the direct problems concerning displacement and stress 
analysis problems of 3D elastic structures the finite element method (FEM) [17] is 
chosen. 

1. The interpolation procedures  

Parameterization is the key stage in the structural immune optimization. The 

great number of design variables causes the optimization process to be ineffective. 

A connection between design variables (parameters of B-cell receptor) and number 

of finite element leads to poor results. Better results can be obtained when the  

hyper surface of mass density distribution is interpolated by suitable number of 

values given in control points ( )
j

X . This number, on the one hand, should provide 

the good interpolation, and on the other hand, the number of design variables 

should be small. 

Two different types of the interpolation procedures for the function of three 

variables ( , , )f x y z  were applied. First the multinomial interpolation described 

below for a 3D structure was introduced. The second interpolation procedure based 

on some nodes overlapping selected FEM nodes has been introduced (interpolation 

bases on the neighbourhood of elements). 
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1.1. The procedure for the interpolation function of three variables - 

multinomial interpolation 

In the case of optimization of 3D structures, a procedure of interpolation func-

tion of three variables  ( , , )f x y z  [18] is expressed as an approximation of a set of 

values of the function at the nodes 
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applying a three-dimensional domain, with a grid using steps ,  ,x y z∆ ∆ ∆   

(Fig. 1). 

 

Fig. 1. Interpolation area of function of three variables ( , , )f x y z  
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For a given coordinate 
j

y y= and 
k

z z=  hyper surface ( , , )
j k

F x y z  is approx-

imated by multinomial  ( ), ,j kW x y z : 
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similarly 
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and next 
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where 1 1 1
, , 

− − −

X Y Z  - regular Lagrange matrices for nodes 0,1,...,n . 
 

It can be proved that 

 ( , , ) ([1, ,..., ] [1, ,..., ] [1, ,..., ]) ( )
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and expression ( )
− − −

⊗ ⊗
1 1 1

X Y Z  is the tensor product (Kronecker) of matrix 
1 1 1
, , 

− − −

X Y Z . 

The interpolation procedure for optimization of 3D structures for 27 control 

points of hyper surface (interpolation nodes) is used 
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where 
1 2 27
, ,...,

j j j
h h h  are parameters of j-th lymphocyte of population of B-cells t: 

 
1 2 27
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j j j j
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limf h h h =    (9) 
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In that case the base is assumed 
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Matrices  and X, Y  Z  take the form 
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The multinomial interpolation after inversion of the matrices , , X Y Z  and  

determination of a matrix which is the tensor product (Kronecker) of matrix 
1 1 1
, , 

− − −

X Y Z  takes the following form 
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After multiplication of the expression, the final expression is obtained 
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where the coefficients of the multinomial 
1 2 27
, ,...,a a a  are determined on the basis 

of an expression 
1 2 27
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Fig. 2. Arrangement of control points 
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The structure which is under the optimization process is inserted into a cube 
3
H  whose edges have length A = 2, B = 2, C = 2, and 27 control points are  

arranged regularly (Fig. 2). In this case the number of control points is fixed. In the 

case when the body has complex geometry whose overall dimensions are consider-

ably different from the space 3
H , this approach can lead to the lower accuracy of 

the interpolation process. Then the domain Ω  does not cover the working space 

(Fig. 3). 

1.2. The procedure for the interpolation function of three variables - 

interpolation bases on the neighbourhood of elements 

In order to overcome these difficulties, the second interpolation procedure based 

on some nodes overlapping selected FEM nodes has been introduced. This proce-

dure (Tab. 1) is based on the analysis of the neighbourhoods of the individual 

nodes and enables the introduction of an optional number of the control points in 

any nodes of the finite element mesh. 
 

 

Fig. 3. Comparison of workspace for two interpolation procedures 

Table 1  

Interpolation procedure in the optimization of 2D and 3D structures 

Load nodes i = 1,2,...,W  and elements e = 1,2,...,R   

For e = 1,2,...,E  load the initial vector of interpolation parameters 0 0 0

1 2 E
p , p ,..., p   

For k = 0,1,2,...,K      “k - step of iteration” 

{ 

For i = 1,2,...,E    “for all the elements” 

{ 

If T[i]=0  “i-th element does not contain a control point” 

{ 

For  j = 1,2,...,M    “for all neighbouring elements of i-th node” 

calculate max(pj)  

calculate min(pj) 

calculate pi
k+1 = 1/2[max(pj

k)+ min(pj
k)] 

} 

If T[i] = 1 1
=

k+ k

i i
p p     “i-th element contains a control point” 

} 

} 
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This interpolation procedure works in an iterative way 

 ( ),  0,1,2,...,f k K= =
k+1 k
W W  (14) 

where the approximations of the interpolation vector in the following steps k = 0 

are given by the expression 
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where 0
,  1,2,...,

i
p i R=  are the initial values of the optimal parameters for particu-

lar elements of the mesh, R is the total number of elements. The values of optimi-

zation parameters in control points are the values of parameters 

,  1,2,..., ;  1,2,...,
j

i
h i n j N= =  j-th lymphocyte 

1 2
[ , ,..., ]

j j j j

t n
limf h h h=  population of 

B-cells t. For this element value of T[i] is equal to one. The others values of initial 

vector are equal to 
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For these elements value of T[i] is equal to zero. 

The next approximations of the vector of optimal parameters  

 1 1 1
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k k k
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are calculated by equation 

 1 1
[max( ) min( )],  1,2,...,

2

k k k

i j jp p p j M
+
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where: 

T[i]  - vector deciding about position of control points (if T[i] is equal to one -  

i-th element contains control point, if T[i] is equal to zero - i-th element 

doesn’t contain a control point), 

M  - the number of neighbours ,  1,2,...,
j

S j M=  for i-th element 

,  1,2,...,
i
P i R=  (Fig. 4),  

1k

i
p
+   - the value of the interpolation parameter for i-th element, in step k+1, 

k

jp   - the value of the interpolation parameter for j-th element which is 

a neighbour for element  i-th, in step k-th, 

max( )
k

jp  - the maximal value of the interpolation parameter for elements which are 

neighbours for element i-th, in step k-th, 
min( )

k

jp  - the minimal value of the interpolation parameter for elements which are 

neighbours for element i-th, in step k-th. 
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Fig. 4. Elements Sj neighbouring with element Pi 

Expression (18) provides convergence of the iterative process, and the efficien-

cy of the interpolation method. In addition the following expressions are also 

checked 
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where:  

M  - number of neighbours ,  1,2,...,
j

S j M=  for i-th element ,  1,2,...,
i
P i R=  

(Fig. 4), 

( , )
i j

w P S  - weight function of influence of neighbour parameter ,  1,2,...,
j

S j M=  for 

the value of the parameter optimization for the element ,  1,2,...,
i
P i R= , 

1k

i
p
+   - the value of the interpolation parameter for i-th node, in step k+1, 

k

jp   - the value of the interpolation parameter for j-th node which is a neigh-

bour for node  i-th, in step k-th. 
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These equations like the expression (18) provide the convergence of the itera-

tive process, but their use in the optimization process is less preferred than the use 

of the expression (18). 

2. Numerical examples  

The optimized structure (Fig. 5) is discretized by cubic finite elements and sub-

jected to the stress constraint in the case of the minimization of the mass of the 

structure. The dimensions and loading of 3D structures are included in Table 2 and 

the parameters of the immune algorithm are included in Table 3. Table 4 includes 

information about two types of constraints for the immune algorithm. 

In the first of three examples a 3D structure is optimized by means of multino-

mial interpolation with constant number of control points. Next two examples are 

optimized by means of interpolation based on neighborhood of elements with  

eleven control points and the last example with twenty-two control points (Fig. 6). 

 

 

Fig. 5. The geometry and scheme of loading 

Table 2  

The dimensions and loading of 3D structure 

Dimensions [mm] 

a 260 

b 320 

c 80 

d 100 

e 160 

Loading [kN] 

Q 1.5 
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Fig. 6. Spacing of control points: a) multinomial interpolation, b) interpolation based on 

the neighbourhood of elements with 11 control points, c) interpolation based on the 

neighbourhood of elements with 22 control points 

The results of the computations are presented in Table 5. Material properties of 

finite elements are changed and some of them are eliminated by means of the pro-

posed method [13, 15]. As the result, the optimal shape, topology and material of 

the structures are obtained. 

The main aim of these examples is to compare two different types of parametri-

zation. In order to compare these procedures the number and distribution of control 

points are changed. After immune optimization process different 3D structure are 

obtained (Tab. 5). 

 

Table 3  

Parameters of the AIS 

Numbers of de-

sign variables 

The number of 

memory cells 

The number of 

the clones 
Crowding factor 

Gaussian 

mutation 

27, 11, 22 6 30 0.25 0.25 

 

Table 4  

Constraints 

Case 1 Case 2 

Maximal stress 

2 MPa 2.5 MPa 

Maximal displacement 

0.013 mm 0.018 mm 

 

Table 6 includes information about fitness functions for optimized 3D structure 

for three different interpolations for two different constraints. 
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Table 5 

Results of optimization of 3D structure for two types of parameterizations 

 Case 1 - map of mass densities and struc-

ture after smooth procedure  

Case 2 - map of mass densities and struc-

ture after smooth procedure 
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Table 6 

Comparison of the final results of optimization 

 Case 1 of constraints Case 2 of constraints 

 Value of fitness functions [mm3] 

multinomial interpolation 1.763·106 1.695·106 

interpolation based on the neighbour-

hood of elements with 11 control points 
1.791·106 1.722·106 

interpolation based on the neighbour-

hood of elements with 22 control points 
1.748·106 1.684·106 

Conclusions 

An effective tool of immune optimization of 3D structures has been presented. 

Using this approach, the shape, topology and material optimization are performed 

simultaneously. The important feature of this approach is its universality for 3D 

problems. The implementation of the AIS to this approach gives a great probability 

of finding the global optimal solution; however, the proper choice of the interpola-

tion method is very important. On the basis of the obtained results the interpolation 

based on the neighbourhood of elements is better than multinomial interpolation. 

In addition to second interpolation based on the neighbourhood of elements the 

optional number of control points can be loaded and all working space is  

always used. It is the following advantage of this method. 

In addition, the increase in the number of control points permit to obtain more 

accurate distribution of hyper surface but for higher number of control points, the 

number of individuals in each generation must be increased. 

The described approach is free from limitations connected with classic gradient 

optimization methods referring to the continuity of the objective function, the gra-

dient or hessian of the objective function and the substantial probability of getting 

a local optimum. Besides in the case of using gradient methods finding the global 

solution depends on the starting point. The immune algorithm performs multidirec-

tional optimum searching by exchanging information between lymphocytes and  

allows best B-cell receptors to survive. 
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