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Abstract. In the paper, the process of identification of crack parameters occurring 

in the cantilever beam with the variable cross-sectional area has been presented. For identi-

fication, the non-destructive vibration method has been applied. The analytical solution 

of the free vibration problem of the beam described according to the Bernoulli-Euler theory 

has been obtained with the help of Green’s functions. 
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1. Introduction 

A non-destructive methods  are used in order to detect structural damage. These 

methods allow one to specify the parameters of the defect and the assessment 

of the strength of the examined element with as small as possible interference 

in the test object. Non-destructive methods are: a visual method, a penetration 

method, a magnetic particles method, a radiographic method, an ultrasonic method 

and a vibration method. 

The visual method [1] involves performing inspection of an examined element 

by skilled personnel. This allows one to obtain the following information about 

the object: structural quality, roughness, presence or absence and the extent of 

damage. The penetration technique [2] consists of cleaning the test surface, cover-

ing it with a penetrating substance and removing excess material. The next step is 

the spraying of a substance called a developer, which reacts with the previously 

imposed substance. This causes gaps to become visible due to penetrated substance 

changes of color. The magnetic particles method [3] is based on magnetization 

of the test surface, covering it with fine magnetic particles and puttying a magnet. 

Verification is done by identifying the agglomeration of particles on the surface 

of the magnet. The radiographic technique [4] applies the use of X-rays or gamma 
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rays to identify the damage. Principle of operation utilizes a differential based on 

the absorption between the image of area containing the defect, and the area free 

of defects. The ultrasonic method [5] consists in the introduction of ultrasonic 

waves to the test object. These waves move in the element with little damping 

and velocity dependent on the material properties (mainly elasticity and density). 

The vibration method [6-14] is based on the measurement of the vibration structure 

using, for instance, accelerometers or a laser vibrometer. The locations having 

structural defects lead to changes in the structure characteristics and its dynamics 

overall. 

The papers [6-12] concern the identification of damage occurring in beams/ 

/columns with a constant cross-sectional area, whereas in the articles [13, 14] 

the free vibration of the beam with cross-section changed linearly were considered. 

Authors of [6-14] present the results of experimental studies and/or the results 

obtained with the use of the finite element method. In this paper, the theoretical 

vibration method has been applied to identify a crack appearing in the cantilever 

beam with a nonlinear variable cross-sectional area. The analytical solution of 

the free vibration problem has been obtained with the help of the Green's function 

method. 

2. Formulation and solution of the free vibration problem 

of the cantilever beam with variable cross sectional area 

The process of identifying damage by use of a frequency is based on 

the knowledge of a certain number of vibration frequencies of undamaged element 

and the knowledge of the same number of vibration frequencies of an element 

with a defect. The number of known frequencies depends on the number of 

searched parameters of one or more defects. An example of application of the fre-

quency method in the identification process for characteristics of a damage were 

performed on the cantilever beam with a variable cross-sectional area (Fig. 1). 

It was assumed that the gap can only occur at one point. 

 

 

Fig. 1. A scheme of the system under study 
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The analyzed object is a cantilever beam of length Lb with a damage at the point 

L of the beam. Variable cross-sectional area A(x) is defined as the product of  

a constant width b and parabolic varying height of beam h(x). 

Figure 2 presents a scheme of the beam’s approximation by a multistep model 

[15- 17]. Each of n  segments have constant geometrical parameters and the same 

physical properties. The damage is localized at the point x = xn1 = L and has 

the extension g = xn1+1 − xn1. 

 

 
Fig. 2. A sketch of stepped beam 

The governing differential motion equation of i-th (i = 1,…,n) segment of 

the considered system, according to the Bernoulli-Euler theory, is: 

 ( ) ( ) ( ) ( ) ( )txFtxzxAtxzxEI
ittiixxxxii
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where: zi(x,t) is the transverse displacement, EIi  is the flexural rigidity, ρAi is 

the mass per unit length of the i-th beam segment and  
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The functions si(t), mi(t), occurring in (2), are the shear force and bending 

moment acting on the right end of the i-th segment, δ(·) is Dirac’s delta and δ'(·) 

is the doublet function (the derivative of the Dirac’s delta [18, 19]). The transverse 

displacements functions z1, zn satisfy boundary conditions corresponding to 

the cantilever beam: 

 ( ) 0,0
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 (3) 

and continuity conditions at the dividing points of the segments xi (i = 1,...,n – 1): 
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Constant parameters EIi, ρAi, for i = 1,…, n1, n1 + 2,…, n (for a beam without 

damage i = 1,…, n) and i = n1 + 1 (damaged segment) are as follows: 
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After separation of variables: zi(x,t) = Zi(x)cosωt, ( ) tSts
ii
ωcos= , 

( ) tMtm
ii
ωcos=  (ω - the frequency of free vibrations of a beam) and introducing 

parameters: 24
ω

ρ

i

i

EI

A
=Ω , ( ) 1−

=
iii
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EIMM , equation of motion (1), 

boundary (2) and continuity (3) conditions may be written as:  
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To solve the problem (7)-(9) the Green’s function method is used [17, 19]. 

Green’s function 
i

G  ( ni ,,1K= ) of the linear differential operator 4

4

4

ii

dx

d
Ω−=Λ  

satisfies the non-homogeneous equation 
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and may be written in the form 
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The functions: 

 ( ) xx
ii

Ω= cos
1

φ ,   ( ) xx
ii

Ω= sin
2

φ ,   ( ) xx
ii

Ω= cosh
3

φ ,   ( ) xx
ii

Ω= sinh
4

φ   (12) 

constitute a fundamental set of solutions to the homogeneous equation associated 

with (10). 



Damage identification of a beam with a variable cross-sectional area 27

Assuming that the functions 
i

G  are known, determined solution of (7) has 

the form 
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for the coefficients of flexural rigidity distribution ( ) 1
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( 1,...,1 −= ni ). The nontrivial solution of (14) exists for the nonsingular main 

matrix of the system, its yielding to the equation 
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The frequency equation (15) corresponds to a stepped cantilever beam if 

the Green’s functions 
i

G  (for i = 2,…,n) correspond to the free-free beams and 
1

G  

corresponds to the clamped-free beam. The constants jiC  occurring in (11) are 

determined on the basis of the appropriate boundary conditions at the ends of beam 

segments. 

With respect to the frequency ω , equation (15) is solved numerically by the use 

of an approximate method. The mode shapes corresponding to ω  are in the form 
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of (13). Assuming 1
1
=S , other coefficients 

2 1 1 1
,..., , ,...,

n n
S S M M

− −

 are determined 

from the system (14). 

3. Sample numerical results of identification of crack parameters 

Using the presented model, the algorithm and computer program that enable 

the determination of the free vibration frequencies of the cantilever beam with 

variable cross-sectional area has been worked out. 

Example results of numerical calculations illustrate the identification of two 

parameters of damage, i.e. location (L) and height of crack (h). It was assumed that 

the damage extension is g = 1 mm (Fig. 2). Others parameters of the beam are as 

follows: Lb = 550 mm, L0 = 225 mm, h0 = 67.272 mm, b = 5 mm. These assump-

tions cause that only the first three natural frequencies of the undamaged and 

the damaged beam are required. 

On the basis of the determined natural frequencies, the normalization process 

must be performed. In this case, the normalization is defined as the ratio of 

the respective frequency of the damaged beam (ωu) to the frequency of the beam 

without damage (ωn): 

 
n

u

ω

ω
λ =  (16) 

Based on the normalization factors, the three-dimensional graphs are created. 

In Figures 3-5 the change in the values of the first three normalized vibration 

frequencies depending on the location and height of damage are shown. 

On the basis of three-dimensional graphs, the individual contour lines for each 

examined frequency having the same parameters of the damage must be plotted. 

As an example, the contour lines for the crack located close to the free end of 

the beam were plotted (Figures 6-8). 

 

 

Fig. 3. The first normalized vibration frequency depending on the location (L) 

and height (h) of the crack 
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Fig. 4. The second normalized vibration frequency depending on the location (L) 

and height (h) of the crack 

 
Fig. 5. The third normalized vibration frequency depending on the location (L) 

and height (h) of the crack 

 
Fig. 6. Contour line for the first normalized vibration frequency 

 
Fig. 7. Contour lines for the second normalized vibration frequency 
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Fig. 8. Contour line for the third normalized vibration frequency 

 

Fig. 9. The identified damage parameters 

The intersection of the contour lines presented in Figures 6-8 identifies the loca-

tion (L) and height (h) of the crack (Fig. 9). As a result of the intersection, the point 

describing the parameters of the damage (L = 400 mm, h = 14.85 mm) has been 

obtained. These parameters correspond very well to the assumed values L = 400 mm, 

h = 15 mm. This means that the method has high accuracy, because the relative 

error does not exceed 1%. 

In the computational models, a rigid restraint is often used. However this type 

of boundary condition is impossible to achieve in real objects. This results in drawn 

up theoretical models, in most cases, not being able to express the real structures 

correctly [20]. Therefore, mathematical models should be experimentally verified. 

The verification should be applied most of all to undamaged structures. In the case, 

when the system response diverges from the theoretical results, then an identifica-

tion of the model must be performed [16]. 

4. Conclusions 

In the present work the identification of the parameters of the crack occurring 

in the cantilever beam with variable cross-sectional area has been done. For identi-

fication, the non-destructive vibration method has been applied. This method 

requires knowledge of the frequencies of the system without and with the damage. 

The solution of the free vibration problem of the beam described according to 

the Bernoulli-Euler theory has been obtained with the help of Green's functions. 

Although in this study only exemplary numerical research has been carried out, 

this method can be successfully used for the identification of damage of real objects. 
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In addition, the method can also be used for verification of defects included in any 

structure (not only the beams). Identifying structure damage at an early stage has 

a great influence on the repair cost and has a significant impact on safety. 
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