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Abstract. The main purpose of this paper is to analyze the convergence of the proposed 

algorithm of the finite element methods coupled with a Euler discretization scheme. Also, 

an optimal error estimate with an asymptotic behavior in uniform norm are given for 

an evolutionary nonlinear Hamilton Jacobi Bellman (HJB) equation with respect to the 

Dirichlet boundary conditions. 
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1. Introduction 

In this paper, we extend our work [1] and continue to analyze the convergence 

of the proposed algorithm of the finite element methods coupled with a Euler  

discretization scheme. In addition, an optimal error estimate with an asymptotic 

behavior in uniform norm are given, for the following evolutionary nonlinear HJB 

equation: 
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where Ω  is a bounded open domain of ,
N

R ,1≥N  with boundary Γ  sufficiently 

smooth and Σ  set in ,RR ×
n

 [ ]T,0×Ω=Σ  with ,+∞<T  the ( ) ( )Mif i
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if  is a regular function satisfying 
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We shall also need the following norm 
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Let ( ).,.  be the scalar product in ( ).2
ΩL  

In (cf. [1]), we applied a new time-space discretization using the semi-implicit 

time scheme combined with a finite element approximation, we found (1) can be 

transformed into the following full-discrete HJB equation 
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where ( ) ?,. =
if  IAB

ii
µ+=  such that i

A  defined on (2), ,
1

T

n

t
=

∆
=µ  respec-

tively. 

In [1, 2] we proved the theorem of the geometrical convergence and the exis-

tence and uniqueness of the solution of both the continuous and the discrete HJB 

equation of the stationary case using Bensoussan's algorithm. Also, in (cf. [1, 2]) 

the system of parabolic quasi variational inequalities (PQVIs) can be transformed 

into a system of the following full-discrete system of strongly coercive elliptic 

quasi variational inequalities (QVIs): find ( ) ki
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with 
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where the discrete spaces 
i

hV  of finite element given by 
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where hr  is the usual interpolation operator defined by 
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and hτ  denote the set of all those elements, 0>h  is the mesh size and it is regular 

and quasi-uniform. Moreover, the usual basis of affine functions ,lϕ ( ){ }hml ,...,1=  

defined by ( ) ,lssl K δϕ =  where 
s
K  is a sum of triangulation mesh and i

B  be 

the M-matrices [3] with generic entries 
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and M  is an operator defined by 
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with 0>L  and ( )iuψ  is a continuous operator from ( )Ω∞
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The class of the system of QVIs with coercive bilinear form includes at least 

two well-known important problems: the system of variational inequality of feed-

back obstacle (VIs) (when ( ) 1+
=

ii
uuψ  and 11 +

=
M
uu ), and the system of quasi- 

-variational inequality related to management of energy production (when ( )iuψ  is 

identically equal to ,inf
µ

µ

u

i≠

 ,0>µ  (cf. [4]). 

The evolutionary HJB equations (1) have many applications in science, engi-

neering and economics; see for example [4] and references therein. They can arise 

in solving optimal control problems by dynamic programming techniques. Many 

nonlinear option pricing problems can also be formulated as optimal control  

problems, leading to HJB equations. 

In the last few decades, many numerical schemes have been proposed for  

solving the stationary HJB equations; see for example [3, 5, 6] and references 

therein. Lions and Mercier [7] presented two iterative algorithms for solving HJB  

equations. At each iteration, a linear complementary subproblem or a linear  

equation system subproblem is solved. Boulbrachene and Haiour [8], by means of 

a subsolution method, conducted a finite element approximation study for the first 

time, for the stationary of the problem (1) and by using Bensoussan-Lions algo-

rithm [4], a quasi-optimal error estimate in the ∞

L  - norm has been derived accord-

ing the following result 
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In [2], exploiting the above arguments, where we analyzed the theta time 

scheme combined with a finite element spatial approximation for an evolutionary 

HJB equation with linear source terms and we derived the following error estimate 
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with ∗

C  a constant independent of both h  (step of the space discretization) and k  

(step of the time discretization), where ( ),,...,

,1,1, nM

hhh uuU =  the discrete solution 

calculated at the moment-end ,tnT ∆=  [ ]1,0∈θ  and ,

∞

U  the asymptotic continu-

ous solution with respect to the right hand side condition. In addition, we extended 

the above result [1] to nonlinear case but with the new generalized  

space-time discretization stands using the theta scheme and we obtained the fol-

lowing result: 
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where c  is the rate of contraction of the nonlinear source term satisfying 

 ,β<c  (14) 

with 

 constant. a isββ ,0)(
0

>≥xa
i

 (15) 

In this paper, an ∞L -error estimate is established combining the geometric 

convergence of discrete iterative schemes using the known ∞

L -error estimates for 

stationary and evolutionary free boundary problems (cf., e.g., [2, 8]) which play 

a major role in the finite element error analysis section. Finally the asymptotic 

behavior in uniform norm is deduced which investigated the evolutionary free 

boundary problem similar to that in [1]. 

The structure of this paper is as follows. In Section 2 and 3, we consider the 

discrete system of quasi-variational inequalities, discretize the iterative scheme by 

the standard finite element method combined with a theta scheme and an algorithm 

iterative discrete scheme is introduced. Then its geometric convergence is proved 

with respect to ∞

L -stability of the solution and the right-hand side and its charac-

terization as the least upper bound of the subsolutions set (see also [1, 8]). It is 

worth mentioning that this approach is entirely different from the one developed 

for the evolutionary problem. Also, it is used for the first time for a system of sta-

tionary QVIs. In Section 4, a fundamental lemma and given optimal error estimates 

with an asymptotic behavior in uniform norm are proved for the presented prob-

lem. Finally, we make some comments on the approach and the results presented 

in this paper. 

2. The discrete coercive system of QVIs 

Definition 1: ( )kM

h

k

h
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h

,,1
,...,ζζζ =  is said to be a subsolution for the system 

of QVIs (8) if 
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Notation 1: Let hX  be the set of discrete subsolutions. Then, we have the  

following theorem. 
 Theorem 1: [1] Under the discrete maximum principle, the solution of the  

system of QVI (8) is the maximum element of .hX  

2.1. Existence and uniqueness 

In [2], we have proved the existence and uniqueness of the discrete QVIs (8) 

using the algorithm based on semi-implicit time scheme combined with a finite 

element method, which has already been used in our previous research regarding 

the evolutionary free boundary problems (see [1, 2]). 

For that, let us first introduce the initial vector ( ),,...,
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2.2. A discrete iterative scheme 

Starting from 
00ˆ
hh UU =  solution of (17), we define 
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2.3. Regularity of sequences of HJB (21) 
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3. Geometrical convergence of the discrete algorithm 
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Proposition 1: [1] Let [ ]1,0∈ω  such that 
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then, we have 

 ( ) .1 VTWTVT hhh λω −≤−  (29) 

Proposition 2: Under the assumptions and previous notations, we have 
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discrete solution of (1) using the standard finite element method. 
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Under the third step of the proof of Theorem 3 in [1], we deduce that 
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4. Optimal error estimates and asymptotic behavior 

Before discussing the results, it is interesting to introduce the result of the 

following problems 
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hh UU =  solution of (17) and 
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hU  is the subsolution of (8). 

Theorem 4: For all nk ,...,1=  and C  is a constant independent with ,n  we 

have the following estimate 
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using the semi-implicit scheme. 

Proof: The proof is similar to that in [3]. 

The following lemma will play a crucial role in obtaining the approximation 

error: 
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Using the induction assumption, we get 
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5. ∞

L -optimal error estimate 

Theorem 5: For all nk ,...,1=  and C  independent by ,n  we have the following 

estimate 
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From the initial data in (1), we have ( ) ( )xxUU ϕ== 0,ˆ 0  and ,ˆ 0 h

hU ϕ=  then, 

it can be used the following standard error estimate [3, 6] which investigated 

the stationary case 
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Using the estimates (30), (32) and (35), thus 

( ) ( ) .ˆ1ˆ1loglogˆ 002222

h

kkk

h

k
UUhkChhChUU λλ −+−++≤−

∞

 

Setting 

( ) ,1
2
h

k
=−λ  

then 

( )
.

1log

log2

λ−
=

h
k  

Therefore, it can be deduced 

.logˆ 32
hChUU

k

h

k
≤−

∞
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Proposition 3: [1] Under the assumption (14), we have for all nk ,...,1=  

the following estimates 

 
( )
( ) ∞

∞

∞

∞ −








∆+

∆+
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0
1

1

hh

k

h

k

h UU
t

ct
UU

β
 (36) 

Now we evaluate the variation in ( )( )ML Ω
∞  - norm between ( ),,

~

xTUh  the  

discrete solution calculated at the moment tnT ∆=  and ,

∞

U  the asymptotic con-

tinuous solution of (1). 

 Theorem 6: Under the results of Proposition 3 and Theorem 5, we have for 
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1
log
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 (37) 

 Proof: Using Theorem 5 and Proposition 3, it can be easily obtained 
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which completes the proof. 

6. Conclusions 

In this paper, the regularity and convergence of the presented algorithm sequen- 

ces of the finite element methods coupled with the Euler time discretization scheme 

are analyzed. Also, an optimal error estimate with asymptotic behavior in a uniform 

norm are given for an evolutionary HJB equation with respect to the same proposed 

boundary conditions in [2]. A next paper will propose a decomposition methods 

for solving these problems. The convergence of the new scheme will be established 

and the numerical example will be shown to prove that the new presented scheme 

is efficient. 
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