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Abstract. In this article we consider the question of existence in the Holder class of the 

solution of the initial-boundary problem for a linear parabolic second-degree equation with 

discontinuous coefficients in noncylindrical domain. This domain is bounded of the smooth 

elementary surfaces of the Holder class 2/)2(,2 λλ ++

Η . The boundary conditions and the 

conjugation condition of the Wentzel type are given to external and internal boundaries of 

a domain respectively. We use the potential method to solve this problem. 
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1. Introduction 

The theory of potentials is very important in the study of the Cauchy problem, 

the boundary-value problem, the conjugation problems for the heat equations and 

the general second-degree parabolic equations as well. The potential method is 

used to thoroughly examine the initial-boundary problems for the uniformly para-

bolic equations when the order of the differential boundary operators is less than 

the order of the equation in the domain [1-8]. We can encounter the initial-

boundary problems which contain derivatives of the second and higher orders. 

The Wentzel problem is a vivid example of this type [9]. This is the initial-

boundary problem for the parabolic equation with the boundary condition which 

has the form of a parabolic operator on the tangential variables. That problem 

arises, in particular, into the theory of Markov processes in the construction of 

a diffusion process in a domain on predetermined the diffusion coefficients and 

the boundary conditions. 
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The parabolic initial-boundary Wentzel problem (in a cylindrical domain) was 

investigated in the works [10-12] by the methods of functional analysis. In the pa-

pers [13, 14] (in cylindrical and noncylindrical domains) this problem was studied 

by the boundary integral equation method using a simple-layer potential. As for the 

parabolic problem with Wentzel conjugation conditions, this problem, for the case 

of a cylindrical domain, is studied in the most general formulation in the papers 

[15, 16]. 

In this article, we consider one of the problems in the assumption that the 

boundaries of the domains are the elementary noncylindrical surfaces of the Holder 

class. 
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At the points of the surfaces 
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where )~,
~
;

~
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~
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Rx ξ  Tt ≤<≤
~~

0 τ ) is a f.s. of the uniformly para- 

bolic equation .0
~

14
=uL  Returning to the variables ),( tx  we can write equality 

(26) as 
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)0( τξντξτξ

n
txPtx ⋅=Γ  ,),(

0
Σ∈tx  ,),(

0
Σ∈τξ  .0 Tt ≤<≤τ  

The function ),,(
1

txu
0

),( Σ∈tx  belongs to class )( 0
2/)2(,2
ΣΗ

++ λλ  as well. 

Thus, we have two representations for values of function 
1
u  on :

0
Σ  relation 

(18), where one should put ,1=m
0

),( Σ∈tx  and relation (27). Then, comparing 

the right-hand sides of equalities (18) and (27) and taking into account (25), we ob-

tain the first integral equation for the unknown functions 
m

V  and ,
2+m

V .2,1=m  

Using the equality (27) and the conjugation condition (10), we find the second 

equation for these functions. The third and fourth equations of the required system 

for 
m

V  and ,
2+m

V ,2,1=m  we obtain from the boundary conditions (12) and (13) 

similar to the way in which we found the first equation. After appropriate transfor-

mations, an obtained system of four equations for the unknown functions 
m

V  and 

,
2+m

V ,2,1=m  can be represented as 

(25)
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1
Γ  and 

2
Γ  are the f.s. of the parabolic equations which we obtained after trans-

formation of the boundary conditions (12) and (13) using the scheme to obtain 

the equation (21). The kernels ,mlK ,2, +lmK ,,2 mm
K
+

,2,2 ++ mm
K ,2,1=m ,2,1=l  are 

expressed by the functions which have a „weaker” singularity than the function 

),;,(
)( τξtxG
m  at .t↑τ  

So, we have a system of four integral Volterra equations of the first kind (28) 

for 
m

V  and ,
2+m

V .2,1=m  The functions ),,( tx
m

Φ  ,),(
0

Σ∈tx ,2,1=m  and 

),,(
2

tx
m+

Φ ,),(
m

tx Σ∈ ,2,1=m  from right-hand side of equations of this system 
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belong to the Holder classes )( 0
2/)2(,2

0
ΣΗ

++ λλ
 and )(

2/)2(,2

0
m

ΣΗ
++ λλ

 respectively. 

In order to transform each of the equations of this system, we introduce the special 

integro-differential operators similar to the operator that was introduced (see [4, 8, 

13-16]) in the study of the first boundary-value parabolic problem by the boundary 

integral equation method. 

Let .\),(
00

Stx Σ∈  In this case, the integro-differential operators (denote them 

by ,
m
Ε 2,1=m ) which will be used to transform the first two equations of system 

(28), can be defined by the formula 
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00
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,2,1=m  is a f.s. of the uniformly parabolic operator, which is a trace of the opera-

tor ,
m
L ,2,1=m  on .

0
Σ  To transform the third and fourth equations of the system 

(28), we use the integro-differential operators ,
2+m

Ε ,2,1=m  which are similar to 

the operator ,
m
Ε ,2,1=m  from (29). To this end on the right-hand side (29) we 

should replace the function ),;,(
)0( τξtxH
m  and integrate over the surface )0(

τ
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the function ),;,(
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m  and integrate over the surface )(m
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 respectively. Here 
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Σ∈τξ Tt ≤<≤τ0 ) is a f.s. of the parabolic 

operator, which is a trace of the operator 
m

L  on ,
m
Σ .2,1=m  

Applying 
m
Ε  and ,

2+m
Ε ,2,1=m  to both sides of the corresponding equations 

of the system (28), we transform this system into the equivalent system of the inte-

gral Volterra equations of the second kind 
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where 
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And for the kernels ,mlR ,2, +lmR ,,2 mmR + ,2,2 ++ mmR ,2,1=m ,2,1=l  the inequality 

(23) is true. 

Solving the system of equations (30) by the method of subsequent approxima-

tions, we find ,
m

V .4,3,2,1=m  One can additionally verify that 
m

V  and ,
2+m

V  

,2,1=m  satisfy the condition (19). 

We obtained the solution of the problem (8)-(13) by formulas (18), (30). To 

complete the proof of Theorem, we have to only check that this solution satisfies 

the condition (16) and the estimate (17). We have to also verify the statement of 

the Theorem on the uniqueness of this solution. 

In this regard, we note that the strict proof of these facts practically repeats 

the similar statements in the papers [13-16]. The theorem is proved. 

7. Conclusions 

In the article, we investigated the question of the classic solvability of the para-

bolic initial-boundary problem with the boundary conditions and one Wentzel 

conjugation condition in the assumption that the boundaries of the domains are 

the elementary noncylindrical surfaces of Holder class .

2/)2(,2 λλ ++

Η  The solution 

is obtained by the usual parabolic simple-layer potentials by using the boundary 

integral equation method. The proposed approach can be used to solve a similar 

conjugation problem in the noncylindrical domain of the more general type. 
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