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Abstract. In this article we consider the question of existence in the Holder class of the
solution of the initial-boundary problem for a linear parabolic second-degree equation with
discontinuous coefficients in noncylindrical domain. This domain is bounded of the smooth
elementary surfaces of the Holder class H**“*»’>. The boundary conditions and the
conjugation condition of the Wentzel type are given to external and internal boundaries of
a domain respectively. We use the potential method to solve this problem.
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1. Introduction

The theory of potentials is very important in the study of the Cauchy problem,
the boundary-value problem, the conjugation problems for the heat equations and
the general second-degree parabolic equations as well. The potential method is
used to thoroughly examine the initial-boundary problems for the uniformly para-
bolic equations when the order of the differential boundary operators is less than
the order of the equation in the domain [1-8]. We can encounter the initial-
boundary problems which contain derivatives of the second and higher orders.
The Wentzel problem is a vivid example of this type [9]. This is the initial-
boundary problem for the parabolic equation with the boundary condition which
has the form of a parabolic operator on the tangential variables. That problem
arises, in particular, into the theory of Markov processes in the construction of
a diffusion process in a domain on predetermined the diffusion coefficients and
the boundary conditions.
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The parabolic initial-boundary Wentzel problem (in a cylindrical domain) was
investigated in the works [10-12] by the methods of functional analysis. In the pa-
pers [13, 14] (in cylindrical and noncylindrical domains) this problem was studied
by the boundary integral equation method using a simple-layer potential. As for the
parabolic problem with Wentzel conjugation conditions, this problem, for the case
of a cylindrical domain, is studied in the most general formulation in the papers
[15, 16].

In this article, we consider one of the problems in the assumption that the
boundaries of the domains are the elementary noncylindrical surfaces of the Holder
class.

2. Problem statement and its solution

In a layer R/™=R"x(0,T), where T>0 is fixed, R", n>2, is the
n-dimensional Euclidian space of the points x=(x',x,), x'=(x,...,x, ;)€ R"",
we consider the domain Q= {(x, t)e R |F1 (x",t)<x,<F, (x',t)}‘ with the smooth
boundary 6Q=3%,UX,, where X, = {(x,t) e R |xn =F, (x',t)}, m=12. We
assume, that the surface X, = {(x,t) e R |x,, =F, (x',t)} subdivides the domain Q
into two domains €, and Q, with the boundaries 0Q,=%X,0%,, m=12, and
F(x,0) < Fy(x',1) < Fy(x',1).

Let D,=Q,n{t=0}, m=12, S =%, n{t=1}, r€[0,T], m=0,1,2,
in particular by S,, m=0,1,2, we denote S" at 7=0. By
v (y,7)= (Vf”’)( 2,7,V (), 2')) we denote the unit normal vector at the point
(y,7) to the surface Sf”’), m=0,1,2, which is in the section 7 =7, and the vectors

v(y,7) and v”(y,7), v*¥(y,7) directed inwards to the domains Q, and Q, re-
spectively. 0 (x',r) is the value of the function v(x,?) on the surface X,
m=0,1,2, i.e. 0(x,t)=0(x', F,,(x',1),1).

The differential operators with respect to ¢ and x, we denote by D, and D,,

V=(D,.....D,), " (i=1,...,n) is a tangent differential operator on X,

n
m=0,1,2, ie. 5™ = Z r,.(k’”)Dk, where rfk”’) = 5,]‘ - v,(”’)v,({’"), Lk=1....n, 5,]‘ is the
=1

Kronecker symbol. If xe R”, y e R", then (x,y)= z XV
i=1
Let Bc R" and O R'*' be any domains, B and Q are the closure of them,
[ and A are some numbers, />0 is an integer and 0 < A <1.
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Similar to [3, ch. I, § 1] H***Y2 is the class surface, H'**(B) and

H* 4120 are the corresponding Holder spaces with the norms ||(/)||H,+ 2B and

||z//||H,+1,(,+,1),2@) which are defined on B and O respectively. IBI]”’U”W(@) is

the subspace of functions from H'**/*#/2(0) that together with admissible de-
rivative with respect to the time variable, vanishes at ¢t =0. C, ¢ are positive con-
stants independent of (x,7). We are not interested in their specific value.

In a layer R}, let us consider two second-order uniformly parabolic equations

i
i,j=1

n n
Lmum = Z a(’")(x’ t)DiDjum +Z al(m) (X,I)D,- U, + a(()m)(x’ t)um - Dlum = O’ (1)
i=1

m=1,2.

Assume that the coefficients of the operator L,, m=1,2, are defined in R;'*'
and the following assumptions are true:

2 —
,am=a'", 8, >0, m=12, V(x,t)e R,

(AD Y a™ (x,0)EE, 2 8|

if Jioo
i,j=1
vEeR",;
(A2) a{”,a"™, a{" e H***(R}"™"), m=12,i,j=1....n.

Assumptions (A1), (A2) guarantee the existence of a fundamental solution (fs.)
for each equation from (1) (see [3, ch. IV, § 11]) which we will denote by

G (x,t;&,7), (x,E€R", 0< 7 <t<T), m=1,2.
Let us consider the integrals - the parabolic simple-layer potentials:

13
u) (0 =[de (G (680, (& 0ds;, (GneR, m=12, ()

m
0

1
uy) (60 = [dr [G (. 68,00V,.0E0ds,, (6DeR™, m=12,  (3)

0 ng)

where the functions V,, and V,,,,, m=1,2, defined, bounded and continuous on
surfaces X, and X, respectively.

We note some properties of the potential (2), (3) (see [1-4]). The functions (2)
and (3) satisfy the equation (1) at each point (x,£)e R/*'\Z, and (x,/)e R} \2,,
respectively, and they also satisfy the initial condition ! (x,0)=0, xe R",
j=0,1; m=12.
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At the points of the surfaces X, and X,, m=1,2, let the conormal vectors
Nty = A" (e, v (x,1), (x,0)€Z,, and N"(x,0)= A" (x,()v" (x,1),
(x,t) € X,,, where A("’)(x,t)=(a,§m)(x,t))zj=1, m=1,2, be defined. The important

property of the simple-layer potential reflected in the boundary relations for the
conormal derivative of this potential (see [2, ch. V, § 2], [3, ch. IV, § 15], [4, 5]).

Using a fs. G (x,1;&,7) we can identify and explore in the unbounded

domain the properties of two integrals connected with the operator L,, m=1,2:
1
u) ()= [dr [ G (i, 0) f,(E0)dé, m=1.2, )
0 r”
D, =|G" (x40 d =1,2 5
" (X,1) (x,4:6,0)9,,/(5)ds, m=1,2. )

R

The first integral is called the volumetric potential and the second one is called
the Poisson potential. If specified functions f,,(x,7), x€ R", 7€[0;T] and ¢,,(x),
xeR", m=1,2, are bounded and continuous, f,,(x,7) satisfies the Holder condi-

tion for variable x uniformly relative to 7 €[0;7] then the function u'? (x,7) satis-
fies the equation

L177u7(712)(x> t) = _fm(xa t)a m= 19 2> (6)

in the domain (x,7)e R with a zero initial condition #'”(x,0)=0, xe R", and
3)

m

the function u,,’(x,r) satisfies equation (1) in the same domain with the initial

condition
ul) (x,0)=9,(x), xeR", m=1,2. (7)
Considering this, we can give the general classical solution of the Cauchy prob-
lem (6), (7) as the sum of potentials (4), (5). And if f, e H**'*(R/™),
@, € H**(R"), then the potentials (4), (5) and therefore the solution of the prob-

lem (6), (7) belongs to the Holder class H*****2/2(R*),
We will consider the following conjugation problem: we have to find the func-
tion u(x,t) =u,, (x,t), (x,t)€ Q,,, m=1,2, based on the conditions

Lyt (x,0) = =1, (x, 1), (x,0)€Q,,, m=12, ®)
ul‘ﬂ ('x’O) = ¢777 ('x)’ X € ‘Dl‘ﬂ > m= ]" 2’ (9)

Lu(x,t) =u (x,0) —uy (x,0) = z(x, 1), (x,£) e )\ Sy, (10)
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La(x.t)= Y. B (x.0508 uy - (B (x.t). Vi) + A7 (x. ) — Dy + 0
i,j=1

+ (B 0,V + A7 (0 =006, (ROET\S,,

LSul (X, t) = Z ﬂ((/'l) (x> t)5/(1)5_§1)u1 + (ﬁ(l) (x> t)’ Vul ) + ﬁ(gl) (X, t)ul - (12)
i,j=1

_Dful :l//l(xat)a (xat)ezl\ Sla

Lo (x,0)= Y BP (.88 P uy + (B2 (x,0), Vy ) + B (x. 0y — 13)
i,j=1

Dy =y, (x,1), (x,0)eX,\S,,

where B (x,0) = (50" () Ly, B () = (B () Ly, m=1.2.
We assume that for the coefficients of the Wentzel type operators L,, L; and
L, the following conditions hold:

2 m m
> ﬂ;g )(x’t):ﬁ;]. )(X,t), /u0m>05 V(X,I)EZW,

BI) Y A" (DEE, > ol

i,j=1
VEeR", £Lv"(x), m=0,1,2;
(B2) B, g, B e HA2(2y), iy j=1,...on, (BO,v ) >0, m=1,2;

U 2
m_pmAm e A2, =1, ,m, B™™)20, m=1,2.

i o Pi
Also we assume, that

2,2, e HFAED2 5w 08 V> d,, >0, m=1,2, (14)
fm EH]VJ'/Z(E]}:H—I), gom €H2+1(RVI), m :1’2’

zeH*AIR(E)), 0e M), w,eHY2(E,), m=12. (15)

We will assume that for the function f,,, @,,, v,,, m=1,2, z, 8, from (8)-(13)
the agreement conditions hold at #=0 and these conditions are determined by
a given the boundary conditions (12), (13) and the conjugation condition (11).

Then the following statement is true.

Theorem. Let for the coefficients of the operators L,,, m=12, and L,, Ls, L,
conditions (A1), (A2) and (B1), (B2) hold, respectively, for the surfaces %,
m=0,1,2, and the functions f,,, ¢,, yv,, m=12, z, @ from the right-hand side
(8)-(13) the conditions (14) and (15) hold. Then the problem (8)-(13) has a unique
solution
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u, e H*HED2(Q Y m=1,2, (16)

in the performance the appropriate agreement conditions and the estimation

2
”(OmMHz“I(R") +
1

m=

2 2
2””"1 ||H2+’1v(2“”/2(5,,,) =C Z"fm||HL’“2(E;'“)+
s=1 m=1

2 (17)
el s * S, |
is true.
Proof. We will look for the solution of the problem (8)-(13) in the form
3
w, (x,0)=> u(x,0), (x.)eQ,, m=12, (18)
s=0

of the sum of the simple-layer potentials (2), (3) with the unknown densities
V,(£, 1), V,.,(&,7) and the potentials (4), (5) with the known functions f,,(&,7),

¢,,(£). Using the properties of these potentials, we will find the unknown func-
tions V,, and V,,,,, m=1,2, so that for u,, m=1,2, the conditions (10)-(13) have
been met.

Let us consider a priori that unknown densities V,, and V,,.,, m=1,2, satisfy

the conditions

14

2 A2 2202
)716161 (20)9 V)71+2€I(—)I (Zm)s m=152' (19)
Now we pass to investigating the conjugation condition by Wentzel type (11).
First, we transform this equality by separating its tangential and conormal compo-
nents in the expressions that contain the derivatives of the first order in space vari-
ables using ratio

d ~ ou,,(x,t)
(Om) (0m) (Om) m )

ﬁ X, ,Cum = E 6,- X, 5] um+ Yom X ) ———, m—1,2, 20
( ( ) ) P ( ) 0 ( )GN(O”’)( ,t) ( )
h 5(0 ) =D ——V](O) En N(Om)D =1 =12, 1 t t diff
where o, i ( om) (0))k_1 k ks 1 seees 1, M , 4, 1S a tangent dirter-

(Om) (0)
ential operator on 2\ S, ¥, (x,1)= (B (Om)(x,t),v(o)(x,t)) , m=1,2.
(N (x, 1), v (x, 1))
Then using (20) and the relationship from the theorem on the jump of the
conormal derivative from the simple-layer potential (see [4]), we can write the

condition (11) as
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Lyu,(x,1) => B (x.08"8u, Z B (x,0)8 "V, +Z B (x,0)8, Pu, + on
i,j=1 i=1

+ (ﬁém) (X, t) + ﬁ(gOZ)(xﬂ t))ul - Dtul = 0(0) (x: t): (xat) € Z:0\ SO:

where
Ou,, (x,t)
0 (x,1) =6 (x,1) + " W (D s
(x.0)=60(x,1) ,,,21( VoD S e
0(x,0)=0(x,0)+ B (x.0)z(x,0) + > B (6,08, z(x. 1),
i=1
! (m) (o g (22)
6u(,),,(x,l) :(_l)m—lle(x’t)_i_IdT J‘ oG O(x,t,é:,r) Vm(§’ T)ds§ +
ON"(x,1) 2 2 qo N
o o aN(Om)(x’t) m+2 £ aN(Om)(x t) 9 L
S‘Z'
(m) .
For the kernel w, m=1,2, in the first and second integral from
AN (x,1)

(22) the estimations ((x,t) € £,\ S,, (£,7) € (20 v Zm)m {0 <r<t< T})

G (x,t;&,7)
N (x, 1)

t—7

n+l-4 2
2 _ |x - §| _
<C(t—71) exps—c¢ , m=1,2, (23)

are true.
Now, consider (21) as the autonomic parabolic equation on %,\ S, for the func-
tion u,;. For its solution we introduce the following transformation of the variables:

x> ((X,7), X=x, i=lL...,n-1, X,=x,-F(x",t), f=t.

The conjugation condition (21) in new variables will take the form:

n-1 —
L4u1 Z,B(O)(?C' 1)D, Dyuy +z B DDty + 0(0)(37'#‘ ), —
k=l k=1 (24)

- Dy =0 (¥',7), (X.7)eRy,

where
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>0 0)=(0)=(0 0) ~ o1 02
BV =S BUROED, ki=lon-l  BOE) =B+ B,

ij=1

— n
20 (02 (01 ~ ~(1 ~ =2 (0 0),—(0) —(0
B = B~ B Ty o) 3 BOSO@OT). k=n .

i,j=1

Vor =@y ( B Zﬂ(OI)DFo DFOJ» Vo= (@) ( B> Zﬂ(oz)DFoj,

ou,,
aﬁ(om

9(0)_ 9"’_2( l)m l~0m

m=1

— -1 _
, 0=0+[3"z+ Z B = Vnaa Dz, (25)
i=1

If follows from the conditions of Theorem, the additional assumption (19),
formulae (25) and properties of the potentials that the coefficients and the function

on the right-hand side of this equation belong to the space H**'*(R;). It is known
that, the unique solution #, of the equation (24) which satisfies the initial condition

0, (X',0)=,(x"), X' € R"™, can be represented by the formula

w(¥.0)= [PE.1E0pENE - [dr [PE.T:ED0VE TE, (26)

Rn—l 0 Rn—l

where P(X',7 E 7) (X E’e R, 0<7<7<T)is a fs. of the uniformly para-
bolic equation L, 7;=0. Returning to the variables (x,f) we can write equality

(26) as

w(x0)= [T(x6:E,0)p(&)ds; — [dr [T(x,6:£,00" (. 0)ds;, (x.0)€Z,, (27)

So 0 g

where T'(x,t;&,7)=P(x,t;E,7)- vV (E, 1), (x,0)eZ,, (£,7)eX,, 0<r<t<T.
The function u,(x,t), (x,f) € £, belongs to class H***)/2(2 ) as well.

Thus, we have two representations for values of function u;, on XZ,: relation
(18), where one should put m =1, (x,t)€ X, and relation (27). Then, comparing
the right-hand sides of equalities (18) and (27) and taking into account (25), we ob-
tain the first integral equation for the unknown functions V,, and V,,,,, m=1,2.
Using the equality (27) and the conjugation condition (10), we find the second
equation for these functions. The third and fourth equations of the required system
for V,, and V,,,,, m=1,2, we obtain from the boundary conditions (12) and (13)
similar to the way in which we found the first equation. After appropriate transfor-
mations, an obtained system of four equations for the unknown functions V,, and

v,

m+2»

m =1,2, can be represented as
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[dr [G" (8.0, r)ds§+22: [dr [K(x:8. 00 0)ds, +

0 5O I=lo O

2

t
+ z dr J‘Km,l+2 (X, L é:a T)Vl+2(§a T)dS§ = CDm (X, t)a (X, t) € 209 m= 19 2>
=19 S;/)

[ (28)
dr [G" (80,0 (E0)dse+ [dT [ Koy (€00, (E,0)ds +

S.gm) 0 Sz(_O)

S — ~

t
+[dr [Kyrmr (o6, (&S =@, (60, (%1€, m=12,

0 Sg”’)

where

3
D, (x,0) =D (x,0)= > uly (x,0) = (m=1z(x,0), m=1,2,
=2

! ) ~ 2.3 — au(l)(g,f)
Dy (x,1)= _£d7s5[5 I'(x,t:¢, T)|:0 (&0)+ ;;(_1)1{ IyOk(g’T)W}ds‘f '
+ IF(x,t;f,OW’l(‘f)dS{’
So

f : 8u(l)(§,r)}
D,y () ==]dr | T,(68,70) 1, (5.0)+7,(8,0) ) — 1= |ds, +
H(x :‘)‘ ng[n) X § T |:‘// § 7))ty é: T gz:aN( )(f,f) Se

3
+ [T, (8,00, (Ods. =D u) (x.0), (x0)€X,, m=12,
S 1=2

_ "0V (x,0) _
Vo (2,0) = (N('")(x, t),v(m)(x, ) , (x,H)eZ,, m=12.

I} and T, are the f.s. of the parabolic equations which we obtained after trans-
formation of the boundary conditions (12) and (13) using the scheme to obtain
the equation (21). The kernels K,;, K, ;2. K112 > Kpiomin, m=1,2,1=1,2, are
expressed by the functions which have a ,,weaker” singularity than the function
G"(x,t;E,7) at £ 1.

So, we have a system of four integral Volterra equations of the first kind (28)
for V,, and V,,,, m=1,2. The functions ®,(x,t), (x,t)eX,, m=1,2, and
D,.,(x,0), (x,t)eX,, m=1,2, from right-hand side of equations of this system
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belong to the Holder classes }012”1’(“”2(20) and IOJZM’(ZM)/Z(Z,H) respectively.

In order to transform each of the equations of this system, we introduce the special
integro-differential operators similar to the operator that was introduced (see [4, 8,
13-16]) in the study of the first boundary-value parabolic problem by the boundary
integral equation method.

Let (x,1) e Z,\S,. In this case, the integro-differential operators (denote them

by &,, m=1,2) which will be used to transform the first two equations of system
(28), can be defined by the formula

1
?E,ﬂ(x,t)l//=% 9 j (t—7)"2dr J' HO (e i:8,0)p(E,0)ds: | . (29)
7|0ty SO H

Here the function H™ (x,7;&,7),((x,0)€Z,\S,, (£,7) €%y, 0<T<t<T),
m=1,2, is a f.s. of the uniformly parabolic operator, which is a trace of the opera-
tor L,, m=1,2, on X,. To transform the third and fourth equations of the system
(28), we use the integro-differential operators E,,,,, m=1,2, which are similar to
the operator ,,, m=1,2, from (29). To this end on the right-hand side (29) we
should replace the function H°™ (x,#;&,7) and integrate over the surface S'” to
the function A" (x,t;£,7) and integrate over the surface S respectively. Here
H"™ (x,t;£,7) (x,t)eZ \S,, (£,7)€X,, 0<r<t<T) is a f.s. of the parabolic
m=1,2.
Applying €, and €,,.,, m=1,2, to both sides of the corresponding equations

of the system (28), we transform this system into the equivalent system of the inte-
gral Volterra equations of the second kind

operator, which is a trace of the operator L, on X

m m»>

2t
Vu(e0)+ 3 [dT [ Ry (et 0 (&, 7)ds, +
=1 ¢

510

2t
+ 2 [dr [ Ry (e s &, 0 () = P (x,0), (1,0 €Z\S,, m=12,
0 g0

, (30)
Vi () + [d [ Ry s, (8,00, (&,7)ds, +

0 5O

t
+ Idl’ J.Rm+2,m+2(xs L 9(:9 T)Vm+2(‘§az—)dscf = \P(m+2)(x’t)’ (x,t) € z:m\ Sm’ m= 13 29

0 ng)
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where

P (x,0)=(A,, (xOVO(x,0), v (x, ) E, (x,0)P,, m=1,2,
P (x,0) = (A, (O (1), v (6,0) 2 B, (4, 0D,,,, m=1,2.

And for the kernels R,;, R, ;2. Ryi2ms Rysamen, m=12,1=12, the inequality
(23) is true.

Solving the system of equations (30) by the method of subsequent approxima-
tions, we find V,,, m=1,2,3,4. One can additionally verify that V,, and V,,,,,
m =1,2, satisfy the condition (19).

We obtained the solution of the problem (8)-(13) by formulas (18), (30). To
complete the proof of Theorem, we have to only check that this solution satisfies
the condition (16) and the estimate (17). We have to also verify the statement of
the Theorem on the uniqueness of this solution.

In this regard, we note that the strict proof of these facts practically repeats
the similar statements in the papers [13-16]. The theorem is proved.

7. Conclusions

In the article, we investigated the question of the classic solvability of the para-
bolic initial-boundary problem with the boundary conditions and one Wentzel
conjugation condition in the assumption that the boundaries of the domains are
the elementary noncylindrical surfaces of Holder class H2**?*4/2 The solution

is obtained by the usual parabolic simple-layer potentials by using the boundary
integral equation method. The proposed approach can be used to solve a similar
conjugation problem in the noncylindrical domain of the more general type.
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