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Abstract. In the first part of the article, an investigation of an open Markov queueing net-
work with positive and negative customers (G-networks) has been carried out. The network
receives two exponential arrivals of positive and negative customers. Negative customers
do not receive service. The waiting time of customers of both types in each system is
bounded by a random variable having an exponential distribution with different parameters.
When the waiting time of a negative customer in the queue is over it reduces the number of
positive customers per unit if the system has positive customers. The Kolmogorov system
of difference-differential equations for non-stationary state probabilities has been derived.
The method for finding state probabilities of an investigated network, based on the use of
apparatus of multidimensional generating functions has been proposed. Expressions for
finding the mean number of positive and negative customers in the network systems have
also been found. In the second part the same network has been investigated, but with reve-
nues. The case when revenues from the network transitions between states are random vari-
ables with given mean values has been considered. A method for finding expected revenues
of the network systems has been proposed. Obtained results may be used for modeling
of computer viruses in information systems and networks and also for forecasting of costs,
considering the viruses penetration.
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1. Introduction

Queueing Networks (QN) with negative customers and other features cause
a special interest of researchers. Negative customers differ from ordinary custom-
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ers in that they require no service and have an impact on the state of the queueing
system (QS). They reduce a queue of ordinary customers of a nonempty QS per [1].

In the present article, we consider an open QN, in which two simple streams of
positive and negative customers arrive. Services require only positive customers.
The waiting time in the queue for positive and negative customers is bounded by
the random variables having an exponential distribution with different parameters.
A negative customer, by the end of waiting time, reduces the count of positive
customers in the system by unity, if there is such a system.

This assumption can find its application in modeling the behavior of infor-
mation systems and networks. When transferring a query (positive requests) there
is often a break or pause established, after which it means that the transfer request
does not fit in the planned time interval, after which the request is removed from
the queue. Negative customers in the model can describe the viruses in the system,
which start acting through a random time and destroy positive customers in the
system.

Recently, attention has been paid to the study of Markov chains with revenues
(HM-networks), and various features, for example with a bounded waiting time of
customers [2], or positive and negative customers [3]. This article discusses a few
more of these features. Namely, the presence in a Markov network with revenues
of negative customers and a bounded waiting time of positive and negative cus-
tomers in network systems.

In other words, we investigate the synthesis of QN-HM-networks [4] with posi-
tive and negative customers. While waiting time of such customers in each system
are bounded by the random variables. We consider the case when the revenue from
the network transitions between states are random variables with given mean values.

2. Network description. Problem formulation

Consider an open G-network [1] with n single-queues QS. An independent
Poisson flow of positive customers with rate A, and a Poisson flow of negative
customers with rate A, arrive to QS S, from outside (system ), i=lLn All
customer flows arriving to QS are assumed to be independent. A positive customer
arriving to the system increases the count of customers in the system by unity and
requires service. Requests are serviced in the order received. Service times of
customers in the i-th QS independent, not dependent on the receipt of the processes

and for positive customers have an exponential distribution with rate ;" (k,), where
k~count of positive customers in the i-th QS i= 1,n. Each positive customer,
located in the system, has a waiting time bounded exponentially distributed random
variable with rate 6, (k,-), for k21, 6, (O)= 0, and it does not depend on other
factors for example waiting time of other customers in the queue, i = Ln.

A negative customer, arriving to QS, increases the length of the queue of nega-
tive customers for one, and requires no service. Each negative customer, located
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in i-th QS, stays in the queue for a random time according to a Poisson process of
rate ,u,‘(l,), for [, >1, where /-count of negative customers in i-th QS, g (0)= 0,
i=1,n. By the end of this time, the negative customer destroys one positive cus-
tomer in the QS S; and leaves the network. If after this random time in the system
there are no positive customers, then a given negative customer leaves the network,
without exerting any influence on the operation of the network as a whole. Wherein
the probability that in QS §;,, a negative customer leaves the queue during
[t,t+At), on the condition that, in this QS at time ¢ there are /, negative custom-
ers, equals 24 (1, )Ar +o(Ar), i = 1,n.

If at time ¢ positive customer is located on servicing in the i-th system, then on
interval [£,¢+ At) it will finish service with probability 2 (k, )At+0(At), i=1n.
If on interval [, + Af) the waiting time of customer in the queue of i-th QS is up,
then it leaves the queue with probability 6, (k, )At + O(At), i=1,n.

The positive customer gets serviced in S, with probability p; move to QS S,
as a positive customer and with probability p, - as a negative customer and with

n
probability p,,=1- Z(p;' + p,j_) come out of the network to the external environ-
—_ J =1
ment, 7, j =1, n.
A positive customer, waiting time of which in the queue of i-th QS has expired,

move to j-th system with probability g, as a positive customers, and with probabil-

ity g, as a negative customer, and with a probability g,, :1—Z(q; +q;) leave
=1
the network. :

The network state at time ¢  described by the vector
k(t)= (k1) = (k1,01 2), (ky Ly s 2),...r (K, 1, 1)), Which forms a homogeneous Markov
process with a countable count of states, where the state (k;,/,,#) means that at time
t in QS S, there are &, positive customers and /, negative customers, i=1,n.

In the first part of the article we shall find probabilities of the network states,
and the mean number of customers in the systems at the transient regime.

3. The system of the Kolmogorov difference-differential equations
for the network state probabilities

We introduce some notations. Let /, - vector, which is i-th component equal to
1, all the others are 0, i =1,#; P(k,l,t) - state probability (k,l) at moment time ¢;
LLx>0;

u(x) - Heaviside function, u(x) = .
0,x<0.
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The possible transitions of our Markov process in the state (k,l,¢+ At) during

time Atf:

— from the state (k—],,l,t), in this case into QS S, for the time A¢, a positive
customer will arrive with probability Au(k,(£))Ar +o(At), i =1,n;

— from the state (k,l -1 ,-,t), while to the i-th QS for the time Af, a negative cus-
tomer will arrive with probability Jgu(l,(1))Ar +o(Ar), i = Ln;

— from the state (k +1,,1 ,t), in this case the positive customer after servicing or at
the end of waiting time (timeout) in the i-th QS, comes out of the network to the

external environment with probability (,tz,+ (k, + 1) Do + 6, (k, + 1)q,0 )At +0(AY),

i=1,n;

— from the state (k+1,,l+l,,t), in the given case into i-th QS after timeout
of negative customer it destroys in the QS the positive customer, the probability
of such an event is equal to s (I, +1)Ar +o(Ar), i =1,n;

— from the state (k,l +I,,t), while in the i-th QS the residence time in the queue

of the negative customer finished, if in time 7 there were [, +1 negative
customers and there were no positive customers; the probability of such
an event is equal to 2z (I, +1)(1 —u(k,(1))At +o0(Ar), i=1,n;

— from the state (k+1,—[ ,,l,t), in a given case after finishing the service

or timeout of the positive customer in the i-th QS it moves to
the j-th QS again as a positive customer with probability

(17 (e, + 1)y + 0.k, +1)q; Julk (0)Ac + o). i =T
— from the state (k+l,,l—l‘],t), in this case after finishing the service

or timeout of the positive customer, in i-th QS it moves to the j-th QS as
a negative customer; the probability of such an event is equal to

(17 (e, +1)py +0,(k,+1)q; Jult, () At + 0 (A1), =1
— from the state (k,l,t), while in each i-th QS, i=1,n, no positive nor any nega-

tive customers arrive, and in which for the time Af no customer not have been
serviced, no negative customer will come out of the queue; the probability of
such event is equal to

1—2[/10 + A+ (1 (k) + 6, (1) )u (ki () + 1 (1,.)u(1,(r))]At+o(At), i=1n;

— from other states with probability o(Af).

We will assume that the service and waiting time of positive customers in the
i-th QS has an exponential distribution with the rate g and 6, respectively, but
the waiting time of negative customers in the i-th QS - an exponential distribution
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with the rate s . Consequently, in this case (k)= u(k,), 6,(k)=6ulk,)
,u,‘(l,)z y7n u(l,), i=1,n. Then, using the formula of total probability, we can

obtain, as previously for other networks [3], in this case the system of difference-
differential equations for the non-stationary state probabilities of the considered
network:

dP(k,l,t I e g N -
%:— ;[ﬂo, + 4, +(,u, +9i)u(k,(t))+,u,. u(li(t))] P(k,1,t)+

#3020 ull (0) Pl - 1,,L¢)+ Zio, (L) PkI~1,,0)+

i=l
+i(,u,+p,0+9,q,0) P(k+1,l, t)+z,u, (k+1.0+1.t)+ (1)
i=1

S k) e 10
i=1

3 o+ 0.0, Julte, )Pl + 1,- 1,00+ (7 py+ 6,05 Jult, )Pl + 1,0 1,2

=l j=1

4. Finding the state probabilities and the mean number of customers
in the queueing system

Denote by ¥, (z, t), where 7 = (Zla Zyseres Zn> Zyal oees Zon ), the generating function
of the dimension of 2n:

0 0 0

k1 kn ]1 171_
Zz ZP(szza 5 ZnsZn4l, ZZn)Zl < Zn Zpgt 2o =
2=00=0 1,=0
0

01,=0 /,, 0
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n

k1 =0

=~
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)

p”48
Ms
Ms

z|<1,

Pkl r)]‘[z

klo k,,

the summation is taking for each k;, /; from 0 to oo, i=1,n. We will assume that
k(6)>0,1(1)>0 V>0, i=1,n.

Multiplying each of the equations (1) to Hzm’" z'm and summing up all possible

m=1

values k,, and [, from 1 to + o, m =1,n. Here the summation for all %, and [,

m m

taken from 1 to + oo, i. e. all summands in (1), for which in the network state k(t)
there are components k, =0 and /, =0, due to the assumptions put forward
above. Because, for example P(kl,...,km_l,O,k,,Hl, ks Loy L1500 415 ,ln,t) 0,
m= ﬂ Then we obtain



102 M. Matalytski, V. Naumenko

AR klt
I3 Sy RS
B P )i ii iPkltHz”’z,Hm

i=1 k=l ky=l=1 [,=1 m=1

n

i=l k=l k== I,=1 ml

+Z@Z..ii iPk! 1,,t)Hz " 2

i=1 k] =1 kn=111 =1 ln=l (3)

Z(ﬂt p10+0%0)z ZZ zp(k-i-[,,l t)HZ mznrim
i=1 =1

m=1

+Zn:y,‘§:...§:§: iP(k+] 1+1, tHz mgln 4

izl k=l ky=lh=1 [,=1 m=1
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i=1 j=1 k=l k,=lj=1 1,=1 m=1

ey +04;)3- ii S Plr -1, 0] [zt

i=1 j=1 k=1 L=l I,=1 m=1

Using (3), similarly as in [5], we can show that for a multidimensional gener-

ating function there is a valid homogeneous linear differential equation, the general
solution having the form

i=l

_Zn:((ﬂ: Dy +9%) (ﬂ, Py +9q,,) L ﬂt}
J=1

I I

n +
an(Zat) = Cn exp{—Z{ﬂ& +%i +/J,++0,- +/ui__/18—izl _/IO_iZnH' - £ Do 01‘]/0 - Z -

Let’s consider, that at the initial moment of time, the network is in a state
(1, @0en005,,0), @, > 0,01, > 0, Py, g s 0,,,0) = 1, P(kyoKysnninky Ly onn, 0) =0,
Ya,#k,l, i=Ln.

Then the initial condition for the last equation will be

¥,,(2,0) = P(ey. ... azn,O)I Iz"‘*"z;’;';:"—l [ zomzguim,

m=1 m=1

from which we obtain C,=1.
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Theorem. If at the initial moment of time the QN is in a state (al,a2,...,a2,,,0),
>0, a,,;>0,i=1,n, then the expression for the generating function ¥,,(z,t),

taking into account the expansions appearing in it exponent Maclaurin, has
the form

(bi+cj+di+e;+hi+17)

W () =arl) S z 3 z 3 zt x

oo ,
T\ 6 Ga) e Vilu ) [T 7i+0a5)| | [T 77 +0i)
><H Aoi ) \doi ) \tti pio +6:qi0 ) \1; blc\d\e\h\r;! X

a;+bj—d;j—ej+H~h;

apyitci—ei+R
X Z] n+i 1 1

1
Zp+i ]s

4)
where

n

szn:h,, RZi’?, ao(t):exp{—
i=1 i=1

[ +,+25,-+/4,++9,-+,u,‘]t}.

i=1

The theorem is proved similarly as, for example, in the works [3, 4].

With the obtained expression for the generating function can be found
state  probabilities of the considered network. State probability of
P(kl,kz,..,kn,ll,lz,...,ln,t) is the coefficient at zlklzlz‘z,...,zf”zfjﬂ,zfﬁrz,...,zé’; in

the expansion of (2) in multiple series (4), on condition, that at the initial time
the network is in a state (al,a2,...,a2n,0).

Remark. If the waiting time of positive customers not to bound by a random
variable, then we obtain results similar to those that is in the work [5].

The mean number of the customers in the network systems can be found, differ-
entiating (4) by z,,i=Ln, and suppose z;=1,i=1,n. Therefore for the mean
number of positive customers in the network system at time 7 in the QS with

the number x we will use the relation, x = 1,_n:
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The change of variables will be done in the expression (5)
k.=a,+b.—d,—e.,+H—h,—r,, and considering, all network QS operating
under heavy-traffic regime, e.g. k;=a,-d,—e¢;—h;—1,+ H 21 and, consequently,
d;<a;—e;,—h—r,+ H —1, therefore obtain for all x=1,n:

o aj-ej—h;-r;j+H-1

AHORTICID YD SR M M i o 8

c;=0 d;=0 e;=0 hi=0
J=Ln,j#i j=Ln,j#i J=Ln,j#i j=ln,j#i ‘/=1,n,‘ J#i ] =1,n

n

> (ki—aj+2d;+cj+2e;+2h;+2r; - H )
X = X

( )k —aj+d;+gi—H+h+r;

di [ _\& h -
/U,+p/ +0_q] y7 n . . i 5 L ) i
XH k a+d+e H_Eh +}’0)'C'd0')e l(h lr)l [H(ﬂl plj'i'glqij)j (H(ﬂl py+9qu)j

i=1 J=1 Jj=1

5. Analysis of the queueing networks with revenues

Let’s find the mean expected revenues, which make customers of the i-th QS
of service in it. We assume, that service and waiting times of positive customers

in the i-th QS has an exponential distribution with rates ;" and 6, respectively,
and waiting times in the i-th QS of negative customers - an exponential distribution
with rate ;. In addition also assume, that all systems operate under heavy-traffic
regime, i.e. k;(t)>0, [,(t)>0 V>0, in this case u(k,(1))=u(l(1))=1, i=Ln.
In the simulation, the effect of the virus penetration into a computer network or by
a computer attacks on it takes place just such a situation. In this case the busy
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period of QS is infinite and, therefore, the stationary distribution does not exist,
the load factor of QS exceeds unity. However, it should be noted that in these
conditions various real objects may operate on most time intervals.

Consider the dynamics of revenue changes of the i-th QS, i = 1,n. Let at the ini-
tial moment of time the income of this QS be equal to v,,, i=1,n. We are inter-
ested in income V;(¢) at time #. The income of its QS at moment time ¢+ Af can be
represented in the form

Vit +a0)=V,(0)+ AV, (1, Ac), (6)

where AV;(1,Ar) - revenue changes of the i-th system at the time interval [£,7 + At),
i= I,_n To find the revenues of the i-th QS we write the conditional probabilities of
the events that may occur during Az, i = 1,n. The following cases are possible:

with probability i;Az+o0(Af) to the i-th QS from the external environment
a positive customer will arrive, which will bring a revenue in the amount of r;,

where r;; - random variable (RV) with expectation (E) of which equals

E{ro’j}zao,, i=1n;

— with probability A,,Ar+0(Af) to the i-th QS from the external environment
a negative customer will arrive, i =1,n; revenue change of the system in this
case does not occur;

— with probability (,u,+ p,0+9,q,0)At+o(At) a positive customer after servicing

or at the end of waiting time (timeout) in the i-th QS, comes out of the network
to the external environment, while a revenue of the i-th QS decreases by

an amount Rj, where R - RV with E{R,B} =by, i=ln

— with probability 2 Af+ O(At) to the i-th QS after timeout of negative customer
it destroys the positive customer in the QS and leaves the network, i =1,n;
in this case a revenue of the i-th QS decreases by an amount R;,, where
E{Ry}= by, i=1,n;

— after finishing the service or timeout of the positive customer in the i-th QS it
moves to the j-th QS again as a positive customer with probability
( s p;. + Qq; )At+o(At), i,j=Ln,i#J; by such a transition a revenue of the
i-th QS decreases by an amount R,; , and revenue of the j-th QS will increase by
this amount, where E{R;} = a;, i,j=Ln i#j;

— if in the j-th QS there is a positive customer, service time or waiting which
ended, then after the termination of it service in the j-th QS it moves to the i-th
QS again as a positive customer with probability ( 7y p;’,+9jq;)At+o(At),
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while a revenue of the i-th QS decreases by an amount R;-, and revenue of
the j-th QS will increase by this amount, where E {R;’,} =b,, I =1,_n, 1#];

— with probability (,ufp; +04; )At+0(At) service time or waiting time of
the positive customer ended in the i-th QS and it, after finishing the service
in the i-th QS, moves to the j-th QS as a negative customer, #,]j =11, i# J;
by such a transition a revenue of the i-th QS decreases by an amount R, and
revenue of the j-th QS will not occur, where E{R;} =a,, L,j=lLni#];

— with probability

J=1

1—{1& g+ 1 Do+ Oy 4+ | 1Py + Oy |+

n

+Zn:[,u;'p;’, + qu;}rZ[,ufp; + qu;]}AtJro(At)
=1

J=1

on the time interval [f,7+ Af) state changes of the i-th system will not happen,
in this case a revenue of the i-th system may increase (decrease) by the value 7Af,
where E{r}=c, i=1,n.

Then we get, that revenue changes of the i-th system on the time interval
[¢,¢ + At] can be written as
rr + 1. At with prob. Jg,At +o(At),
—R, + 1, At with prob. (,ufp,o +0.4q, )At +0o(Ab),
—Ry + 1, At with prob. iy At +o(At),
—R; +r, At with prob. (,ufp; +6,q, )At +o(Ar), )= Ln, j#i,
AV, (t,At) =S iy + r, At with prob. (,u;p;'i +0,q;, )At +o(Ar),j= Ln, j#i, (7
—R, +r,At with prob. (,ufp,; + Qq;)At +o (A1), )= Ln, j#i,

1. At with prob.1— {/15’, + g+ M Do+ OG0+ 4 +

+Zn:[,u,+ (p;r +p,j_)+¢9,. (qr;r +q;)+,uj+p}’, + QJqZ}}AtnLo(At).
J=1

For practical reasons, we may assume that all values 7,;, Ry, Ry, R; , r;-, -
r,i,j=1,n,i#j, are bounded. Then in view of (6) and (7) for the expectation

can be written:
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MAV, (6. A1) = (ay, + ¢, ) 28,60 +0(A0))+
+(—b,5 +¢At )((,ufp,o + Qq,O)At + O(At)) +
+(—bl_0 +c,At )(,ul_At +0(At)) +

+ i [(— a; + c,At)((,uf p; + 9,-(]; )At + O(At))]Jr
=

J#i

+i[(a;, +cAt )((,u;'p;’, + Q,q; )At + O(Al‘)):| +
=1

(e v (70 o(a0)

J#i

+ c,At(l - {j& + A0+ 1 Do+ Oq+ 1+
N g+ 0y 0a; +a Ve ws v+ 0,0 ]}Af + O(Af)J -
Jj=1

= [ao,/l& ~bj (ﬂf Pio + Hiq,o)—b,-?)ﬂ,‘ +e; -

=S arl gy 00y Y v+ 0,00 )- 3 ar (i by + 07 ) A+ ol
j=1

J=1 , J=1
J#i J#i J#i

i.e. M{AV,(t,At)}= f,At +o(At), where
ﬁ = aOIia-I - bIB (/’ll-‘—plo + ‘91‘]10)_ bI_O:u1_+ Ci —
=Sl o+ 07 - 0,0 )+ a5 sy + 05 )
j=1
J

We introduce the notation v, (t)=E{V;(¢)}. From (6) we have
v, (t+At) = v,(t)+E{AV, (Z,AZ)}, from where, by going to the limit Az — 0, and

setting the initial conditions v;(0) =v,,, i =1,n, we can find the expected revenues
of the network systems. This implies, that expected revenues v, (t) are linear func-
tions of time: v, (t): Vot fit,i=1,n.

6. Conclusions

In the paper, the Markov G-network with with a random bounded waiting time
of positive and negative customers at a transient regime has been investigated.
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For such a network that operates under heavy-traffic regime, non-stationary state
probabilities and relations for the mean number of customers with the help of
the apparatus of multivariate generating functions has been founded. And a similar
network with revenues has been considered. The expressions for the expected
revenues of the network systems has been obtained.

Further investigations in this direction will be associated with obtaining similar
results, taking into account falling into the signals (triggers) to the queueing
network.
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