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Abstract. In their usual form, homogenization methods produce first-order approximations
of the exact solutions of problems for differential equations with rapidly oscillating coeffi-
cients which model the physical behavior of microstructured media. However, there is need
of approximations containing higher-order terms when the usual first-order approximations,
which are formed by superposing a macroscopic trend and a local perturbation, are not
capable of reproducing the local details of the exact solutions. Here, two-scale asymptotic
solutions with second-order terms are provided for a Dirichlet problem modeling the steady
state of functionally-graded microperiodic nonlinear rods. The need of considering higher-
order terms is illustrated through numerical examples for various power-law nonlinearities.
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1. Introduction

Typical microstructured media are characterized by both separation of structural
scales and the validity of the continuum hypothesis. This means that the characteris-
tic length of the atomic/molecular scale is much smaller than the length scale of the
assumed microstructural continuum of matter, which in turn is much smaller than the
length scale of the apparent macroscopic homogeneity of matter. This implies that the
hypothesis of equivalent homogeneity is valid, so the microstructured media behave
as ideally homogeneous media whose physical properties are the so-called effective
properties of the former [1, 2]. Effective properties are the macroscopic magnitudes
usually measured in experiments, contain all the microstructural and constitutive
information of the real media, and do not depend on the position at the microscale [3].
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The process of obtaining equivalent homogeneous media is called homogenization.
From the mathematical point of view, the problems modeling the microstructured
media have differential equations with microstructurally-induced rapidly oscillating
coefficients, whereas the problems for the equivalent homogeneous media have equa-
tions with coefficients that are constant with respect to the microstructure. Then, the
validity of the equivalent homogeneity hypothesis follows whenever the difference
between the solutions of the problems for the microstructured and the homogeneous
media is of the order of a power of the small geometrical parameter characterizing
the separation of scales, with respect to an appropriate norm1 [1]. On the other hand,
homogenization methods (such as: asymptotic homogenization [4,5]; two-scale con-
vergence [6,7]; Σ-, G-, Γ- and H-convergences [8–11]; oscillating test functions [12];
tangent second-order2 homogenization [14, 15]; two-space homogenization [16, 17])
usually produce only first-order3 approximations of the exact solutions of the prob-
lems that model the physical behavior of microstructured media. Such first-order ap-
proximations are formed by superposing a macroscopic trend and a local perturba-
tion, which are related to the effective behavior and the influence of the microstruc-
ture, respectively. However, there is a need to consider approximations containing
higher-order terms4 when knowledge of the details of the local behavior of the exact
solutions is required and the traditional first-order approximations fail to reproduce
such local details [18–20]. To the best of our knowledge, only asymptotic and two-
space homogenization methods are capable of providing such higher-order terms.
Also, such a situation is yet to be addressed in a nonlinear context. Here, asymptotic
solutions containing second-order terms are provided via asymptotic homogenization
for a two-point Dirichlet problem that models the steady state of functionally-graded
microperiodic nonlinear rods. The need of considering higher-order terms is illus-
trated through numerical examples for various power-law nonlinearities.

2. Theory

Let ε ∈ (0,ε0), ε0� 1, be the small geometric parameter characterizing the sep-
aration of structural scales of a functionally-graded microperiodic cylindrical rod of
negligible radius, which is constitutively nonlinear and whose steady state is modeled
via the following two-point Dirichlet problem:

Original problem: For each small ε > 0, find uε ∈C2([0,1]) such that

d
dx

[
σ

ε

(
x,

duε

dx

)]
= f ε(x), uε(0) = a, uε(1) = b, (1)

1 That is, a norm of the function space in which the solutions are sought.
2 It refers to approximations of the effective energy density which are exact up to the second order

with respect to the contrast of the phase properties of composite media [13].
3 That is, approximations of the exact solution which are exact up to the first order with respect to

the small geometrical parameter characterizing the separation of scales in microstructured media.
4 These approximations are still exact up to the first order in the small geometric parameter.
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where σ
ε(x,γε(x)) = σ(x,x/ε,γε(x)) is the flux-type function which is continu-

ously differentiable with respect to the spatial variable x ∈ [0,1], ε-periodic in x
in the second argument, and nonlinear and continuously differentiable with respect
to the continuously differentiable gradient-type function γ

ε(x) = duε/dx, and
f ε(x) = f (x,x/ε) is a continuous distribution of point sources that is ε-periodic
in the second argument.5 Such conditions guarantee the existence and uniqueness
of solution uε of problem (1) (see, Theorem 2.1, p. 92, of [22]).

Let y = x/ε ∈ [0,ε−1] be the so-called local variable and let uk(x,y), k ∈ {0,1,2},
be certain unknown functions assumed to be twice continuously differentiable with
respect to both arguments and 1-periodic with respect to y. Then, the formalism of
asymptotic homogenization seeks a two-scale asymptotic solution of problem (1) as

uε(x)∼ u(2)(x,ε) = u0(x,y)+ εu1(x,y)+ ε
2u2(x,y)+O(ε3). (2)

Substitution of (2) into problem (1) uses the chain rule d/dx = ∂/∂x+ ε
−1

∂/∂y,
so, for y = x/ε , the gradient-type function γ

ε is asymptotically approximated as

γ
ε(x)∼ du(2)

dx
= ε

−1 ∂u0

∂y
+ ε

0
(

∂u0

∂x
+

∂u1

∂y

)
+ ε

(
∂u1

∂x
+

∂u2

∂y

)
+O(ε2). (3)

Then, the asymptotic approximation of the flux-type function σ
ε(x,γε(x)) fol-

lows by substituting (3) into its Taylor linearization with respect to the gradient-type
function γ

ε with center γ0(x,y) for γ j(x,y) = ∂u j/∂x+∂u j+1/∂y, j ∈ {0,1}, to yield

σ
ε(x,γε(x))∼ ε

−1 ∂u0

∂y
∂σ

∂γ
(x,y,γ0(x,y))+ ε

0
σ (x,y,γ0(x,y))

+ εγ1(x,y)
∂σ

∂γ
(x,y,γ0(x,y))+O(ε2). (4)

Therefore, the equation of problem (1) is asymptotically approximated as

d
dx

[
σ

ε

(
x,

du(2)

dx

)]
− f ε(x)∼ ε

−2Lyyu0 + ε
−1
{

Lxyu0 +
∂

∂y
[σ (x,y,γ0(x,y))]

}
+ ε

0
{

Lyxu1 +Lyyu2 +
∂

∂x
[σ (x,y,γ0(x,y))]− f (x,y)

}
+O(ε), (5)

with the differential operator Lαβ = (∂/∂α)(κ(x,y)∂/∂β ), α,β ∈ {x,y}, and the
gradient-dependent diffusion-type6 property κ(x,y) = (∂σ/∂γ)(y,γ0(x,y)) which,
for each fixed γ0(x,y), puts the information on the constitutive nonlinearity into the
otherwise linear operator Lαβ .

5 For various physical interpretations of magnitudes uε , γ
ε and σ

ε in the mechanical, electrical,
magnetic and thermal contexts, see, for instance [2, 21].

6 Other interpretations of the material property κ are, for instance, the strain-dependent secant
modulus in nonlinear mechanics [13], and the electric field-dependent dielectric property in nonlinear
electrostatics [23].
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The asymptotic equality in (5) implies that the asymptotic solution (2) solves the
equation of problem (1) exactly up to the first order in ε when there exist functions
uk(x,y), k ∈ {0,1,2}, which are twice continuously differentiable with respect to
both arguments and 1-periodic with respect to y and that nullify the coefficients of
the nonpositive powers of ε in (5). Then, by equating the coefficients of the non-
positive powers of ε in (5) to zero, a recurrent sequence of problems is obtained for
uk(x,y), k ∈ {0,1,2}, with uniqueness conditions obtained by substituting (2) into the
boundary conditions of problem (1) and taking their 1-periodicity in y into account.

Problem from O(ε−2) term: For each x ∈ [0,1], find u0 1-periodic in y such that

Lyyu0 = 0, u0(x,0) = 0. (6)

Problem from O(ε−1) term: Let u0 be the solution of problem (6). For each
x ∈ [0,1], find u1 1-periodic in y such that

∂

∂y

[
σ

(
x,y,

∂u0

∂x
+

∂u1

∂y

)]
=−Lxyu0, u1(x,0) = 0. (7)

Problem from O(ε0) term: Let u j, j ∈ {0,1}, be the solutions of problems (6) and
(7), respectively. For each x ∈ [0,1], find u2 1-periodic in y such that

Lyyu2 = f (x,y)− ∂

∂x

[
σ

(
x,y,

∂u0

∂x
+

∂u1

∂y

)]
−Lyxu1, u2(x,0) = 0. (8)

The following lemma provides a necessary and sufficient condition for the exis-
tence and uniqueness of solutions of problems (6) and (8).

Lemma 1 [4]: Let k(y) > 0 and F(y) be 1-periodic functions with k(y) bounded
and continuously differentiable. Then, there exists a 1-periodic solution N(y) of LN≡
(d/dy)(k(y)dN/dy)=F(y) if and only if the mean value of F(y) over the local period

is null, that is 〈F(y)〉 ≡
∫ 1

0
F(y)dy = 0, where the angular brackets represent such

a local mean value. Such a solution N(y) is unique up to an additive constant C, that
is, N(y) = Ñ(y)+C, where Ñ(y) is the 1-periodic solution of LN = F that satisfies
the condition Ñ(0) = 0.

Proof: See, pp. 19-21, of [4]. 2
For each x ∈ [0,1], identify k(y) = κ(x,y), L = Lyy, N(y) = u0(x,y) and F(y) = 0,

so Lemma 1 applied to problem (6) implies that u0 does not depend on y, u0(x,y) =
= v0(x), so the first term v0 of the asymptotic solution (2) is the macroscopic trend of
the first-order approximation of the exact solution uε of problem (1). The relation of
v0(x) to the effective behavior is discussed later. Then, problems (7) and (8) become
the so-called first and second local problems to find ui, i ∈ {1,2}, respectively:

First local problem: Let dv0/dx be a parameter. For each x ∈ [0,1], find u1
1-periodic in y such that

∂

∂y

[
σ

(
x,y,

dv0

dx
+

∂u1

∂y

)]
= 0, u1(x,0) = 0. (9)
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Second local problem: Let dv0/dx be a parameter. Let u1 be the solution of
problem (9). For each x ∈ [0,1], find u2 1-periodic in y such that

Lyyu2 = f (x,y)− ∂

∂x

[
σ

(
x,y,

dv0

dx
+

∂u1

∂y

)]
−Lyxu1, u2(x,0) = 0. (10)

Observe that, as dv0/dx is considered a parameter, both (9) and (10) can be re-
garded as parametric families of problems, and its correct choice is discussed later.

The following lemma guarantees the existence and uniqueness of the solution u1
of the first local problem (9).

Lemma 2 [4]: Let γ̄ be a parameter. Let γ(y) be a continuously differentiable and
1-periodic function. Let σ(y,γ(y)) be continuously differentiable in both arguments
and also 1-periodic in y. Then, there exist functions N(y, γ̄) which are 1-periodic
in y and solve the parametric family of equations (∂/∂y)σ(y, γ̄ + ∂N/∂y) = 0 with
parameter γ̄ . Such solutions N(y, γ̄) are unique up to an additive constant C, that
is, N(y, γ̄) = Ñ(y, γ̄)+C, where Ñ(y, γ̄) are the 1-periodic solutions that satisfy the
condition Ñ(0, γ̄) = 0.

Proof: Observe that σ(y,γ(y)) does not depend on y for γ(y) = γ̄ + ∂N/∂y, that
is, σ(y, γ̄ + ∂N/∂y) = 〈σ(y, γ̄ + ∂N/∂y)〉 = σ̄ for some flux-type magnitudeσ̄ that
does not depend on y. Then, application of the implicit function theorem produces
γ(y, σ̄) = γ̄ + ∂N/∂y, which denotes the inverse function of σ(y, γ̄ + ∂N/∂y) with
respect to the second argument, and that is 1-periodic in y. Therefore, it follows that
N(y, γ̄) is the primitive of γ(y, σ̄)− γ̄ and whose 1-periodicity in y guaranteed as
〈γ(y, σ̄)〉= γ̄ . 2

For each x ∈ [0,1], by identifying γ̄ = dv0/dx and N(y, γ̄) = u1(x,y), application
of Lemma 2 to the first local problem (9) also implies that there exists the so-called
effective flux-type function σ̂(x,dv0/dx)≡ 〈σ(x,y,dv0/dx+∂u1/∂y)〉, in which u1
is the solution of problem (9) and provides the local perturbation to the macroscopic
trend v0. Furthermore, the relation σ̄ = σ̂(x, γ̄) is the so-called effective law relating
the macroscopic mean flux-type and gradient-type variables σ̄ and γ̄ which describes
the effective nonlinear behavior of the microstructured rod. Interestingly, obtaining
such an effective law, which is sufficient for many applications, does not require ex-
plicit knowledge of the solution u1 of the first local problem (9) but only its derivative
with respect to y.

On the other hand, for each x ∈ [0,1], by identifying k(y) = κ(x,y), L = Lyy,
N(y) = u2(x,y) and F(y) = f (x,y)− (∂/∂x) [σ (y,∂u0/∂x+∂u1/∂y)]−Lyxu1, and
observing that 〈Lyxu1〉= 0, application of Lemma 1 to the second local problem (10)
implies that the existence of its solution u2 depends on the existence of the solution
v0 of the so-called homogenized problem:

Homogenized problem: For f̂ (x) = 〈 f (x,y)〉, find v0 ∈C2([0,1]) such that

d
dx

[
σ̂

(
x,

dv0

dx

)]
= f̂ (x), v0(0) = a, v0(1) = b. (11)
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Let v0 and ui, i ∈ {1,2}, be the solutions of problems (11), (9) and (10), respec-
tively. Then, the asymptotic solution u(2) from (2) becomes

uε(x)∼ u(2)(x,ε) = v0(x)+ εu1

(
x,

x
ε

)
+ ε

2u2

(
x,

x
ε

)
+O(ε3), (12)

which, in view of the asymptotic equality (5), approximates the exact solution uε of
the original problem (1) exactly up to the first order in ε , that is,∥∥∥∥∥ d

dx

[
σ

(
x,

x
ε
,
du(2)

dx

)]
− f

(
x,

x
ε

)∥∥∥∥∥
C([0,1])

= O(ε), (13)

so the second-order term ε
2u2 appears to be useful only for obtaining the homog-

enized problem (11) for the first term v0 of the asymptotic solution (12). For this
reason, most applications do not consider (and most methods are not capable of
obtaining) such a second-order term, but are rather limited to the asymptotic solu-
tion u(1) given by

uε(x)∼ u(1)(x,ε) = v0(x)+ εu1

(
x,

x
ε

)
+O(ε2), (14)

which considers only the terms contributing to the first-order exactness in ε of the
asymptotic approximation of the exact solution uε of the original problem (1): the
macroscopic trend v0 related to the effective behavior via the flux-type function
σ̂(x,dv0/dx), and the local perturbation εu1 of order of the relative length scale ε

of the microstructure. In fact, approximations of the exact solution uε similar to
(12) are what the other homogenization methods produce, that is, a superposition of
a macroscopic trend and a local perturbation. However, there are situations in which
the contribution of such a second-order term ε

2u2 must not be neglected. Specifically,
the asymptotic solution u(2) in (12) must be considered when the asymptotic solution
u(1) in (14) fails to reproduce the details of the local behavior of the exact solution uε

of the original problem (1). This fact is relevant as in most situations the exact solu-
tion uε is not available. Therefore, if knowledge of the local details of the behavior
of uε is required, the alternative to the unavailability of uε provided by the first-order
asymptotic approximation must be as locally accurate as possible, so choosing u(2)

over u(1) is the correct approach.

3. Results

Consider the original problem (1) for the source term f ε(x) = −1, the boundary
values a = 0 and b = 1, and the power-law flux-type function [13, 24, 25] given by

σ
ε

(
x,

duε

dx

)
= kε(x)

(
duε

dx

)n

, kε(x) = 1+
1
4

sin2π
x
ε
. (15)
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Usual linear behavior corresponds to n = 1, whereas the values of the nonlinearity
exponent n∈R∗+\{1} considered here correspond to the so-called strongly nonlinear
behavior for 0 < n < 1 and to the so-called weakly nonlinear behavior for n > 1,
respectively. Also, the coefficient kε is positive, bounded and ε-periodic, and oscillate
rapidly for sufficiently small values of ε . With such considerations, the exact solution
uε of the original problem (1) is obtained via direct integration as

uε(x) =
∫ x

0

(
Cε − s
kε(s)

)1/n

ds, (16)

where Cε is a constant whose value is obtained by substituting the boundary condition
uε(1) = 1 into (16). Observe that uε(x)→ x as n→ ∞, which is useful to control the
computational results.

Figures 1 and 2 show the behavior of the exact solution uε in (16) for various
values of ε and n. Figure 1 illustrates the fact that decreasing values of ε indicate finer
microstructures, so the finer the microstructure, the more rapidly uε varies locally.

Fig. 1. Exact solution uε in (16) for n = 1/7 and various values of ε

On the other hand, Figure 2 shows that, as expected, uε approaches the identity
function for increasing values of n, that is, for weaker nonlinearities. Moreover, ob-
serve that weaker nonlinearities exhibit less local variability and, conversely, stronger
nonlinearties exhibit more local variability. Therefore, it seems reasonable to expect
that the asymptotic solution u(1) in (14) will be sufficient to approximate the exact
solution uε with good local accuracy for weak nonlinearities, whereas the asymptotic
solution u(2) in (12) containing a second-order term will be necessary to approximate
the exact solution uε with good local accuracy for strong nonlinearities.
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Fig. 2. Exact solution uε in (16) for ε = 1/2 and various values of n

The effective flux-type function also exhibits power-law behavior as

σ̂

(
dv0

dx

)
= k̂
(

dv0

dx

)n

, k̂ = 〈k−1/n(y)〉−n, (17)

where k̂ is the so-called effective coefficient. Then, the solution v0 of the homoge-
nized problem (11) corresponding to the effective flux-type function (17), the source
term f̂ (x) =−1, and the boundary values a = 0 and b = 1, is

v0(x) = k̂−1/n
(

C(n+1)/n
0 − (C0− x)(n+1)/n

)
, (18)

where the value of C0 is obtained by substituting the boundary condition v0(1) = 1
into (18). Observe that v0(x)→ x as n→ ∞, so the macroscopic trend v0 seems to
approximate the exact solution uε with sufficient accuracy for weak nonlinearities.

The solution u1 of the first local problem (9) corresponding to the flux-type func-
tion (15) is obtained following the ideas in the proof of Lema 2 as

u1

(
x,

x
ε

)
= Nε

1 (x)
dv0

dx
, N1(y) = k̂1/n

∫ y

0

ds
k1/n(s)

− y, (19)

for y ∈ [0,1], so the so-called first local function Nε
1 (x) = N1(x/ε) is defined over the

period and must be extended to be ε-periodic. Observe that, u1→ 0 as n→∞, that is,
the first-order local perturbation becomes negligible for weak nonlinearities, which
reassures the idea that the macroscopic trend v0 appears to be a sufficiently accurate
approximation of the exact solution uε for sufficiently weak nonlinearities.
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The solution u2 of the second local problem (10) corresponding to the flux-type
function (15) is obtained as

u2

(
x,

x
ε

)
= Nε

2 (x)
d2v0

dx2 , N2(y) = 〈N1(y)〉(N1(y)+ y)−
∫ y

0
N1(s)ds, (20)

also for y ∈ [0,1] and with N1(y) from (19), so the so-called second local function
Nε

2 (x) = N2(x/ε) is defined over the period and must be extended to be ε-periodic.
Observe that, u2→ 0 as n→ ∞, that is, the second-order local perturbation also be-
comes negligible for sufficiently weak nonlinearities, which reassures the idea that
the macroscopic trend v0 appears to be a sufficiently accurate asymptotic approxima-
tion of the exact solution uε for sufficiently weak nonlinearities.

Figures 3 and 4 show the local functions Nε
1 and Nε

2 in (19) and (20), respectively,
for various values of ε and n. Figure 3 shows the behavior of the first local function
Nε

1 and illustrates the fact that decreasing values of ε indicate finer microstructures,
so the finer the microstructure, the more rapidly Nε

1 varies locally. The second local
function Nε

2 behaves similarly for decreasing values of ε .

Fig. 3. First local function Nε
1 in (19) for n = 1/7 and various values of ε

On the other hand, Figure 4 shows the behavior of the second local function Nε
2

and illustrates the fact that increasing values of n diminishes the influence of the
microstructure, as the amplitude of the oscillations of Nε

2 decreases. The first local
function Nε

1 behaves similarly for increasing values of n. Therefore, both first- and
second-order local perturbations become negligible for sufficiently weak nonlineari-
ties, which reassures the idea that the macroscopic trend v0 appears to be a sufficiently
accurate approximation of the exact solution uε for sufficiently weak nonlinearities.
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Fig. 4. Second local function Nε
2 in (20) for ε = 1/2 and various values of n

The asymptotic solutions u(1) and u(2) containing up to first- and second-order
terms in ε , respectively, which approximate the exact solution uε in (16), follow by
substituting (18) and (19) into (14) and (18)-(20) into (12), respectively. Recall that it
is expected that the asymptotic solution u(1) will be sufficient to approximate the ex-
act solution uε with good local accuracy for weakly nonlinear behaviors, whereas the
asymptotic solution u(2) containing a second-order term will be necessary to approx-
imate the exact solution uε with good local accuracy for strongly nonlinear behaviors
and, also, that the macroscopic trend v0 will be sufficient to approximate the ex-
act solution uε for sufficiently weak nonlinear behaviors. In order to evaluate such
expectations, the quality of the asymptotic approximations of the exact solution uε

provided by v0, u(1) and u(2) is quantified via the root-mean-square error (as given
by the discrete version of the L2([0,1])-norm) of such approximations with respect to
the exact solution.

Table 1. Quality of the approximations v0, u(1) and u(2) of uε for ε = 1/2

n ‖uε − v0‖L2([0,1]) ‖uε −u(1)‖L2([0,1]) ‖uε −u(2)‖L2([0,1])

1/7 2.2275 ·10−1 1.0162 ·10−1 3.0656 ·10−2

1/5 1.6311 ·10−1 4.8664 ·10−2 8.7127 ·10−3

1/3 8.9069 ·10−2 1.2667 ·10−2 5.2093 ·10−3

1 2.3395 ·10−2 3.8951 ·10−3 4.0772 ·10−3

3 6.3654 ·10−3 4.0326 ·10−3 4.0508 ·10−3

5 3.7614 ·10−3 4.0510 ·10−3 4.0565 ·10−3

7 3.1245 ·10−3 4.0562 ·10−3 4.0588 ·10−3
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Table 2. Quality of the approximations v0, u(1) and u(2) of uε for ε = 1/16

n ‖uε − v0‖L2([0,1]) ‖uε −u(1)‖L2([0,1]) ‖uε −u(2)‖L2([0,1])

1/7 3.2384 ·10−2 2.2893 ·10−3 1.2652 ·10−3

1/5 2.1678 ·10−2 8.7342 ·10−4 1.0129 ·10−3

1/3 1.1233 ·10−2 5.8235 ·10−4 7.3442 ·10−4

1 2.9003 ·10−3 5.3045 ·10−4 5.3734 ·10−4

3 7.9377 ·10−4 5.1273 ·10−4 5.1298 ·10−4

5 4.7247 ·10−4 5.1101 ·10−4 5.1106 ·10−4

7 3.9400 ·10−4 5.1051 ·10−4 5.1053 ·10−4

Tables 1 and 2 present such a quality quantification of the three asymptotic ap-
proximations v0, u(1) and u(2) of the exact solution uε for ε = 1/2 and ε = 1/16,
respectively, and various values of n. Remarkably, all expectations were met, that
is, the errors for the three approximations were of the same order for weak nonlin-
earities (n > 1) being ∼ 10−3 and ∼ 10−4 for ε = 1/2 and ε = 1/16, respectively,
whereas the error decreases by around one order of magnitude when considering
the approximation containing one more higher-order term in ε than the previous for
strong nonlinearities (n < 1).

4. Conclusions

Here, the asymptotic homogenization method was applied to a two-point Dirich-
let problem modeling the steady state of functionally-graded microperiodic nonlin-
ear rods. Two-scale asymptotic solutions with second-order terms are obtained to
account for the cases in which the usual first-order approximations, that are formed
by superposing a macroscopic trend and a local perturbation, are not capable of re-
producing the local details of the exact solutions determined by the microperiodicity.
It was found that, when considering power-law nonlinearities, the asymptotic solu-
tion containing up to first-order terms is sufficient to approximate the exact solution
of the problem with good local accuracy for weakly nonlinear behaviors, whereas the
asymptotic solution containing up to second-order terms is necessary to approximate
the exact solution of the problem with good local accuracy for strongly nonlinear be-
haviors. Various numerical examples were performed and confirmed these findings.
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