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Abstract. The paper focuses on the mathematical and numerical modelling of the thermo-
elasticity problem in the three-dimensional region. The governing equations of the mathe-
matical model are a set of equilibrium equations. The numerical model uses continuous
Galerkin formulation together with the Finite Element Method (FEM). Both models are
discussed in detail. The final set of FEM equations is derived. The example of numerical
calculations obtained with the use of an original computer program is presented. The main
goal of presented paper is to develop the alternative model to the one based on the Discon-
tinuous Galerkin Method (DGM).
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1. Introduction

Elastic deformations can be induced by thermal and mechanical loads. The solu-
tion of the problem of thermoelasticity is to determine the displacements of the
material points in the considered body caused by the forces or temperature field [1].
The coupling of these two actions can be described by the appropriate differential
equations.

In many cases, which are important from the technical point of view, finding
a solution of the differential equation describing specific physical phenomena in
analytical form is difficult or even impossible to achieve. Therefore, parallel to the
development of analytical methods for finding exact solutions, approximate
methods were developed and improved. In these methods, the problem of searching
for unknown functions (describing e.g. displacement, strain and stress field) is
replaced by the problem of searching for a finite number of parameters that can be
used to describe — with some approximation — the sought functions. In technical
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sciences, approximate methods are usually described from the application side as
specialized computational procedures for specific problems, for example to obtain
elastic deformation fields, temperature fields, electric and magnetic fields. There
are many approximate methods used in the mechanics of a deformable body, e.g.
the Ritz, Galerkin, Trefftz and collocation methods [2-5]. Nowadays, the methods
that are easy to implement using programming languages are very popular. Those
that are the most known are the Finite Difference Method (FDM), the Finite
Element Method (FEM) and the Boundary Element Method (BEM) [5-7].

The main purpose of presented work is to create an original solver for three-
-dimensional thermoelasticity problem based on the continuous approach and
the FEM which is efficient, robust and free to use and makes obtaining results
with the use of different orders of approximation possible.

2. Mathematical and numerical description

Let’s consider a three-dimensional region Q (Fig. 1). On the surfaces I, I, of
the region, the displacements ul(x, y,z) and uz(x, y,z) are given respectively.
In the whole region 2, the temperature distribution 7' (x, y, z) is also known.

[yt u=uy(x,y,2)
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Q: T=T(x,y,z)
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Fig. 1. Considered volume Q with the temperature field T (x, y,z) and displacements

u(x,y,z) on the boundaries T, T,

The starting point of consideration is the system of three equilibrium equations:
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where o, 0,, o, are normal stresses, 7, = 7,,, 7. = T, 7, = T, are shear stresses,
F,, F,, F, are components of the body forces vector. In the further consideration
body forces F\, F,, F are neglected.

To solve the system of equations (1) the criterion of the weighted residual [7, 8]
is used. In this method, the differential equation is multiplied by a function called
the weighting function w and integrated over the considered domain Q, assuming
that the integral equals zero. Using the criterion of the weighted residuals method
for (1), one can obtain the following integral equations:
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The weighting function w can be any function of independent spatial coordinates.
In order to write the weak form of equations (2), the order of each sub-integral
equation must be lowered using Green’s theorem:
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Z
where I'means the surface of Q.
The following relationships between stresses and displacements are used:
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where AT is the difference between current and initial temperatures, o [K '] is the
linear coefficient of thermal expansion and f,, f;, f;, f; are the coefficients listed

below:

___E(-v)
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_ Ev
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£ (5)
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where E [N/m’] is the Young’s modulus and v [-] represents Poisson’s ratio.
The relationships (3)-(4) used in (2) make it possible to form the following integral
equations depending on the displacements:
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Using the equations (6) and the relationship o, + 7, Tyl + zn,= p,, where p, is the

stress on the boundary in the direction of the x axis, in relation to the first equation
from the system (2), one can write:
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Finally, the equation (7) can be written in the following form:
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The other two equations from the system (2) are transformed analogously, i.e.:

J‘(fzﬁwﬁu ﬁawa;;} j(fgﬁwu flawﬁu f3aquQ+

oy ox ox o oy oy oz o
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Equations (8)-(10) are a weak form of equilibrium equations. Further considera-
tions are made on the basis of the Bubnov-Galerkin formulation, which requires
that weighting functions w be assumed the same as the shape functions ¢ of the
finite element.

Assume that the domain Q are spatially discretized into a set of N tetrahedrons:

o=|]a, (11)

J
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The normalized tetrahedron (Fig. 2) meets the following conditions in space T°:
—-1<r,s,t <1 (12)
r+s+t<-1 (13)

where 7, s, t are spatial coordinates.
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Fig. 2. Normalized tetrahedron described by coordinates r, s, ¢
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The following spatial derivatives of the displacements and AT are approximated
according to the formulas shown below:

ou, 4=0p,(r,s,t) ‘. ou, _ /‘421 o9, (r,s,1) ou, _ Mi 09, (7,s,1)
ax ay n=0
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where M — number of shape functions for the tetrahedron (i.e. M =4 in the case of
linear shape functions).

The relation w = ¢ together with (14) makes it possible to write equilibrium
equations for a single finite element. For example, the subsequent integral parts of
equation (8) are written as follows:
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Integral terms appearing in equations (9)-(10) are written analogously. These ele-
ments, properly grouped, form the stiffness matrix K'’:
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where n=m=0,1,....M —1.
The vector B} contains thermal loads. If the temperature distribution is the only

load acting in the analyzed domain, then p,, p,, p, occurring in equations (8)-(10)
disappear. The elements of B') are calculated as follows:
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After calculating the integrals (16)-(17) and inserting them into the matrix K
and the vector B, a local FEM system of equations is obtained.

The discrete model of the thermoelasticity problem currently consists of N local
stiffness matrices K and local right side vectors B"“). In order to build a global
model, one needs to sum up the local matrices:

K=>K" (18)

B=Y B (19)

Aggregation is performed based on node numbers in the finite element mesh.
The size of the global matrix depends on the number of nodes and the number of
unknowns on each node. In this task, the unknowns are the components of the
displacement vector u,, Uy, U, 1.e. there are 3L unknowns at the L nodes in the
entire mesh. The global system of FEM equations is presented below:

K-u=B (20)

After solving the system of equations (20), the displacement vector u is obtained.
To determine the strains in finite elements the following geometric relationships
are used:
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The values ¢, &, & obtained on their basis relationship (21) are the normal
strains while 7, %> %2> %y» %> Ve are the shear strains. The values of elastic
strains &, &,,, &, are obtained by the following way:
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Normal stresses o, 0,, o, in the elements are as follows:
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After creating the geometry of the object and spatial discretization, which makes
it possible to obtain a set of finite elements, the calculations are carried out in three
stages:

e determination of the nodal displacements,
e calculation of the strains in the finite elements,
e calculation of the stresses in the finite elements.

3. Example of calculations

The 3D-region shown in Figure 3 was prepared to obtain the numerical solution
of the problem of thermoelasticity.

0.1

Q: 7=300 K

I':u,=0m

i y //// T3:u,=0 m f
X~ - :
0.1 /

Fig. 3. A heat-loaded cubic region used in the calculations

The material properties of steel used for calculations are presented in Table 1.

Table 1. Material properties used in calculations

Material parameter Value
Young’s modulus £ [N/mZJ 2:-10"
Poisson number v [—] 0.32
Coefficient of thermal expansion o [KAJ 12:10°
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The heated cubic element is able to increase its volume without any obstacles,
which means that the supports do not generate stress. Thermal deformations arise
only in the cubic element, the value of which can easily be calculated, while elastic
deformations are equal to zero. Increasing the temperature by 300 K causes thermal
deformations in each finite element equal to &= @AT=1.2-10"-300=3.6-10",
while the corresponding displacements in the each direction are the same and equal
to &L =3.6-10°-0.1 =3.6-10* m on the free walls.

The cube was divided into finite elements. Spatial discretization was carried
out using the GMSH mesh generator. The average dimension of the element was
assumed equal, resulting in a mesh of 5126 tetrahedrons.

The results of numerical calculations showed full compliance with the theory.
Components of the displacement vector measured on non-attached walls with
a direction perpendicular to the attached walls reach values equal to 3.6-10* m
with negligible small errors.

Figures 4a-c present the values of the components of displacement vectors
calculated in the nodes using the second order of approximation.

oot o
. o0ots ooo0zs Lo o oooots 000028 Lo oooots 000030 L
I ) —-_— S L S

Fig. 4. Values of displacement components in directions: a) x, b) y, ¢) z

Figures 5a-b present displacement fields obtained as a result of calculations
carried out using the first and second order of approximation. The values obtained
are almost identical.

0 0.000312 0.000624 0 0.000312 0.000624

Fig. 5. Displacement vectors in grid nodes obtained for approximation: a) first, b) second orders
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4. Conclusions

The obtained results confirm the correctness of the solver based on the continuous
Galerkin formulation, which is an alternative to the discontinuous version of the
method [9] used to solve the problem of thermoelasticity. The created original
solver allows for numerical computations using complex three-dimensional meshes.
Calculations are time efficient even for a large number of nodes. Modifications
are also easier to implement than in the case of expensive commercial packages.
The future work is focused on the comparison of the obtained results to the results
of a/the discontinuous approach.
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