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Abstract. The paper focuses on the mathematical and numerical modelling of the thermo- 
elasticity problem in the three-dimensional region. The governing equations of the mathe-
matical model are a set of equilibrium equations. The numerical model uses continuous 
Galerkin formulation together with the Finite Element Method (FEM). Both models are 
discussed in detail. The final set of FEM equations is derived. The example of numerical 
calculations obtained with the use of an original computer program is presented. The main 
goal of presented paper is to develop the alternative model to the one based on the Discon-
tinuous Galerkin Method (DGM). 
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1. Introduction  

Elastic deformations can be induced by thermal and mechanical loads. The solu-
tion of the problem of thermoelasticity is to determine the displacements of the  
material points in the considered body caused by the forces or temperature field [1]. 
The coupling of these two actions can be described by the appropriate differential 
equations.  

In many cases, which are important from the technical point of view, finding  
a solution of the differential equation describing specific physical phenomena in 
analytical form is difficult or even impossible to achieve. Therefore, parallel to the 
development of analytical methods for finding exact solutions, approximate  
methods were developed and improved. In these methods, the problem of searching 
for unknown functions (describing e.g. displacement, strain and stress field) is  
replaced by the problem of searching for a finite number of parameters that can be 
used to describe – with some approximation – the sought functions. In technical  
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sciences, approximate methods are usually described from the application side as 
specialized computational procedures for specific problems, for example to obtain 
elastic deformation fields, temperature fields, electric and magnetic fields. There 
are many approximate methods used in the mechanics of a deformable body, e.g. 
the Ritz, Galerkin, Trefftz and collocation methods [2-5]. Nowadays, the methods 
that are easy to implement using programming languages are very popular. Those 
that are the most known are the Finite Difference Method (FDM), the Finite  
Element Method (FEM) and the Boundary Element Method (BEM) [5-7].  

The main purpose of presented work is to create an original solver for three- 
-dimensional thermoelasticity problem based on the continuous approach and  
the FEM which is efficient, robust and free to use and makes obtaining results  
with the use of different orders of approximation possible.  

2. Mathematical and numerical description 

Let’s consider a three-dimensional region   (Fig. 1). On the surfaces 1 , 2  of 
the region, the displacements  zyxu ,,1  and  zyxu ,,2  are given respectively. 
In the whole region  , the temperature distribution  zyxT ,,  is also known.  

 

 

Fig. 1. Considered volume   with the temperature field  , ,T x y z  and displacements 

 , ,u x y z  on the boundaries 1 , 2  

The starting point of consideration is the system of three equilibrium equations: 
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where x , y , z are normal stresses, xy = yx , xz = zx , yz = zy are shear stresses, 
Fx , Fy , Fz are components of the body forces vector. In the further consideration 
body forces Fx , Fy , Fz are neglected. 

To solve the system of equations (1) the criterion of the weighted residual [7, 8] 
is used. In this method, the differential equation is multiplied by a function called 
the weighting function w and integrated over the considered domain  , assuming 
that the integral equals zero. Using the criterion of the weighted residuals method 
for (1), one can obtain the following integral equations: 
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The weighting function w  can be any function of independent spatial coordinates. 
In order to write the weak form of equations (2), the order of each sub-integral 
equation must be lowered using Green’s theorem: 
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where means the surface of  . 
The following relationships between stresses and displacements are used: 
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where T is the difference between current and initial temperatures,  [K–1] is the 
linear coefficient of thermal expansion and f1 , f2 , f3 , f4 are the coefficients listed  
below: 
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where E [N/m2] is the Young’s modulus and ν [–] represents Poisson’s ratio. 
The relationships (3)-(4) used in (2) make it possible to form the following integral 
equations depending on the displacements: 
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Using the equations (6) and the relationship xnx + xyny + xznz = px 
, where px is the 

stress on the boundary in the direction of the x axis, in relation to the first equation 
from the system (2), one can write: 
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Finally, the equation (7) can be written in the following form:  
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The other two equations from the system (2) are transformed analogously, i.e.: 
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Equations (8)-(10) are a weak form of equilibrium equations. Further considera-
tions are made on the basis of the Bubnov-Galerkin formulation, which requires 
that weighting functions w be assumed the same as the shape functions  of the  
finite element. 

Assume that the domain  are spatially discretized into a set of N tetrahedrons: 

 ∪
N

j

j

1

  (11) 

The normalized tetrahedron (Fig. 2) meets the following conditions in space T3: 

 1,,1  tsr  (12) 

 1 tsr  (13) 

where r, s, t are spatial coordinates. 
 

 
Fig. 2. Normalized tetrahedron described by coordinates r, s, t 
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The following spatial derivatives of the displacements and T are approximated 
according to the formulas shown below: 
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where M – number of shape functions for the tetrahedron (i.e. M = 4 in the case of 
linear shape functions). 

The relation w =  together with (14) makes it possible to write equilibrium 
equations for a single finite element. For example, the subsequent integral parts of 
equation (8) are written as follows: 
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Integral terms appearing in equations (9)-(10) are written analogously. These ele-
ments, properly grouped, form the stiffness matrix  eK : 
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 (16) 

where 0,1, , 1n m M  … . 
The vector  eB  contains thermal loads. If the temperature distribution is the only 
load acting in the analyzed domain, then px , py 

, pz occurring in equations (8)-(10) 
disappear. The elements of  e

B  are calculated as follows: 
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After calculating the integrals (16)-(17) and inserting them into the matrix  eK   
and the vector  e

B , a local FEM system of equations is obtained.  
The discrete model of the thermoelasticity problem currently consists of  N local 

stiffness matrices  e
K  and local right side vectors  e

B . In order to build a global 
model, one needs to sum up the local matrices: 

  





1

0

N

i

i
KK  (18) 

  





1

0

N

i

i
BB  (19) 

Aggregation is performed based on node numbers in the finite element mesh. 
The size of the global matrix depends on the number of nodes and the number of 
unknowns on each node. In this task, the unknowns are the components of the  
displacement vector ux , uy 

, uz 
, i.e. there are 3L unknowns at the L nodes in the  

entire mesh. The global system of FEM equations is presented below: 

 BuK   (20) 

After solving the system of equations (20), the displacement vector u is obtained. 
To determine the strains in finite elements the following geometric relationships 
are used: 
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 (21) 

The values x , y 
, z obtained on their basis relationship (21) are the normal 

strains while xy 
, yx 

, yz 
, zy 

, xz 
, zx are the shear strains. The values of elastic 

strains sx , sy 
, sz are obtained by the following way: 
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 (22) 
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Normal stresses x , y 
, z in the elements are as follows:  
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 (23) 

After creating the geometry of the object and spatial discretization, which makes 
it possible to obtain a set of finite elements, the calculations are carried out in three 
stages: 
 determination of the nodal displacements, 
 calculation of the strains in the finite elements, 
 calculation of the stresses in the finite elements. 

3. Example of calculations 

The 3D-region shown in Figure 3 was prepared to obtain the numerical solution 
of the problem of thermoelasticity.  
 

 
Fig. 3. A heat-loaded cubic region used in the calculations 

The material properties of steel used for calculations are presented in Table 1.  

Table 1. Material properties used in calculations 

Material parameter  Value 

Young’s modulus 2N mE     2·1011 

Poisson number     0.32 

Coefficient of thermal expansion 1K     1.2·10–5 
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The heated cubic element is able to increase its volume without any obstacles, 
which means that the supports do not generate stress. Thermal deformations arise 
only in the cubic element, the value of which can easily be calculated, while elastic 
deformations are equal to zero. Increasing the temperature by 300 K causes thermal 
deformations in each finite element equal to T = T = 1.2·10–5·300 = 3.6·10–3, 
while the corresponding displacements in the each direction are the same and equal 
to T 

L = 3.6·10–3·0.1 = 3.6·10–4 m on the free walls. 
The cube was divided into finite elements. Spatial discretization was carried  

out using the GMSH mesh generator. The average dimension of the element was  
assumed equal, resulting in a mesh of 5126 tetrahedrons.  

The results of numerical calculations showed full compliance with the theory. 
Components of the displacement vector measured on non-attached walls with  
a direction perpendicular to the attached walls reach values equal to 3.6·10–4 m 
with negligible small errors.  

Figures 4a-c present the values of the components of displacement vectors  
calculated in the nodes using the second order of approximation. 
 

   
Fig. 4. Values of displacement components in directions: a) x, b) y, c) z 

Figures 5a-b present displacement fields obtained as a result of calculations  
carried out using the first and second order of approximation. The values obtained 
are almost identical. 
 

            
Fig. 5. Displacement vectors in grid nodes obtained for approximation: a) first, b) second orders 

a) b) c) 

a) b) 
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4. Conclusions 

The obtained results confirm the correctness of the solver based on the continuous 
Galerkin formulation, which is an alternative to the discontinuous version of the 
method [9] used to solve the problem of thermoelasticity. The created original 
solver allows for numerical computations using complex three-dimensional meshes. 
Calculations are time efficient even for a large number of nodes. Modifications  
are also easier to implement than in the case of expensive commercial packages. 
The future work is focused on the comparison of the obtained results to the results 
of a/the discontinuous approach.  
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