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Abstract. The presented paper is focused on the comparison of the Continuous and Discon-

tinuous Galerkin Methods in terms of thermoelasticity for a cubic element. For this pur-

pose, a numerical model of the phenomenon was built using both methods together with  

the Finite Element Method (FEM). The comparison of the results of numerical simulation 

obtained with the use of an original computer program based on the derived final set of 

FEM equations for both methods is presented. 
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1. Introduction  

Mechanical and thermal loads as well as the type of used supports are the most 

important factors that determine the behaviour of the each construction element [1]. 

The procedure for determining stresses caused by thermal load using the Continu-

ous Galerkin Method (CGM), i.e. the classical approach to the Finite Element 

Method (FEM), has been discussed in details in [2]. The use of CGM entails the 

necessity of treating the analyzed area in a global way, building a huge stiffness 

matrix (especially in 3D cases) and solving a large number of linear equations.  

The application of the Discontinuous Galerkin method (DGM) [3, 4] to solve  

the spatial problem of thermoelasticity has been discussed in [5]. 

Comparing these two methods, it can be stated that the differences between 

them are quite significant. They mainly concern the way of writing the basic equa-

tions and the methodology of deriving their discrete form. CGM works well for  

elliptic differential equations and steady processes, while DGM is better used for 

hyperbolic equations and transient processes [6]. The problem of thermoelasticity 

belongs to the steady processes and, in addition, the equations describing problem 

include second-order derivatives, which is a significant problem for DGM which 

has an impact on the effectiveness of the method in terms of computation time. 
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Based on assumptions of the mathematical and numerical models presented in 

[2, 5], two proprietary solvers were prepared. Both solvers can be used in numeri-

cal calculations of coupled physical phenomena. The comparison of the obtained 

results make it possible to determine the effectiveness of both methods for the  

considered problem. 

2. Mathematical and numerical description 

The problem of determining elastic deformations in the three-dimensional  

region   (Fig. 1) is based on the known displacements  , , ,xu x y z   , , ,yu x y z  

 zyxuz ,,  on the surfaces 1, 2 , 3  and the temperature field  , , .T x y z  

 

 

Fig. 1. Considered volume   with the temperature field  , ,T x y z  and displacements 

 , ,u x y z  on the surfaces 1 , 2 , 3  

In order to solve the problem at the beginning, the system of equilibrium equa-

tions (1) is considered: 
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where ,x  ,y  z  are normal stresses, ,xy yx   ,xz zx   zyyz    are shear 

stresses, ,xF  ,yF  zF  are components of the body forces vector, which in the further 

consideration are neglected.  

The starting point of the numerical consideration is the criterion of the weighted 

residual [7, 8], which was used to solve the system of equation (1). The differential 

equations (1) were multiplied by the weight function w  and integrated over the 

considered domain  , assuming that the integrals equals zero: 
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The use of boundary conditions in CGM and DGM requires the transformation 

of the equations (1) into the form based on displacements. Therefore, the following 

relationships between stresses and displacements are used: 
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where   [K1] is the linear coefficient of thermal expansion, T  is the difference 

between current and initial temperatures, and 1,f 2 ,f 3 ,f 4f  are the coefficients 

listed below: 
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where E [N/m2] is the Young’s modulus and ν [] represents Poisson’s ratio. 

Assume that the domain   consists of N  tetrahedrons: 
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substituting relations (3) in the equations (1), one obtains the displacement dependent 

integral form of thermoelasticity equations: 
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Details of the mathematical description of both CG and DG methods are pre-

sented in the works [2, 5]. This paper presents only the final equations resulting 

from the application of FEM. 

The global system of FEM equations for CGM is presented below: 

 BuK   (7) 

where K  is the stiffness matrix, u  is the sought displacement vector, B  is the right 

side vector. To obtain the global matrix K  and global vector ,B  one needs to sum 

up the N  local stiffness matrices  eK  and local right side vectors  eB  as follows: 
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Assuming that weighting functions w are the same as the shape functions   

(the Galerkin formulation) the elements of  eK  can be written as: 
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where 1,,1,0  Mmn …  and M is a number of shape functions for the tetra- 

hedron. 

The elements of  e
B  containing thermal loads are calculated as follows: 
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At this point it should be emphasized that in the case of CGM, we have global 

formulation of the problem, while in the case of DGM we must derive the equa-

tions for the each finite element. Therefore, for DGM, the calculation process must 

be done for each finite element, and the final solution is obtained after many itera-

tions. The matrix K(e) is built only once at the start of the process while vector B(e) 

must be rebuilt in each iteration. The final equations resulting from the application 

of FEM for DGM has a form: 
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the following matrices and vectors are used: 
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where Φ  is a vector of shape functions, 11C  is a constant providing convergence 

of the solution whose value is chosen experimentally, ,xn ,yn zn  are the compo- 

nents of the vector perpendicular to the walls of the finite element. 

 

The sought displacement vector  e
x  can be written in the form: 
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where q  are vectors of additional variables introduced instead of derived dis-

placements to the lower order of the equation, u  are vectors of displacement. 

 

One can write the local right side vectors  e
B  as: 
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3. Example of calculations 

The calculations were focused on determining the displacement, strain and 
stress fields in a steel cube, constrained in such a way as to eliminate the effect of 
supports (Fig. 2). 

 
Fig. 2. Geometry of the thermally loaded cube mounted on three mutually  

perpendicular surfaces 1 , 2 , 3  with the boundary conditions 
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This type of constraints allows the heated element to expand in three directions. 

Only thermal deformations are non-zero, the value of which can be easily calculated. 

When the element is heated by ∆T = 100 K, the thermal deformation in each finite 

element is εT = α∆T = 1.2·10–5·100 = 1.2·10–3, and the corresponding displacements 

in each direction are the same and equal εT L = 1.2·10–3·0.1 = 1.2·10–4 m on the  

non-constrained walls. 
 

   
(a)  (b) (c) 

   
(d)  (e) (f) 

   
(g)  (h) (i) 

   
(j)  (k) (l) 

Fig. 3. Displacements ux , uy , uz , u for CG method (a, d, g, j), for DG method (b, e, h, k), 

percentage difference between CG and DG (c, f, i, l). Results obtained  

for approximation order p = 1 
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The cube was divided into the set of finite elements. Spatial discretization  

was carried out using the GMSH [9] open source software. The average dimension 

of the element was assumed as 0.01 m, resulting in a mesh of 5057 tetrahedrons. 

The calculations were performed using the DGM and CGM solvers. The calcula-

tions were made for the approximation order p = 1 and p = 2. 

The comparison of the displacements presented in Figure 3 shows clear differ-

ences between CGM and DGM in the case of linear approximation. The error  

calculated as the difference between the resultant displacements calculated with  

the use of CGM and DGM, divided by the maximum displacement in the area  

and multiplied by 100, reaches 8.75%, with the assumed tolerance ε = 10–9. 

In the case of the approximation of the second order, the maximum error of the 

calculated resultant displacements decreased to 4.96%. The highest error values  

are at the corners of the cube. Unfortunately, the reduction of error entailed a huge  

increase in computation time (Table 1). 

Table 1. The comparison of computation time for CGM and DGM 

 

CGM ε = 10–25 DGM ε = 10–9 

Computation time [s] Computation time [s] 

p = 1 3 3000 

p = 2 60 21600 

 
In Table 1, the calculation time necessary to achieve the assumed precision is 

presented. In the case of CGM, ε = 10–9 was assumed, the computation time increased 

 significantly with increasing the approximation order, but compared to DGM,  

it was definitely shorter. For p = 1, DGM gave a convergent solution with ε = 10–9 

after a time one thousand longer than CGM. In the case of p = 2, this time was  

360 times longer.  

The theory shows that the elastic stresses for assumed constraints should be  

zero because the heated element can freely expand. Fig. 5-6 presented normal 

stress components calculated for both methods. The results prove that CGM com-

plies with the theory. In this case, deviations from zero are negligible both for p = 1 

and for p = 2. Unfortunately, DGM generates “artifacts” of incorrect stress values 

that occur especially frequently near the edges. For p = 2, the erroneous values are 

smaller, but still significant. 

In Table 2, the number of degrees of freedom in each calculation is presented. 

In the case of DGM, a very large number of degrees of freedom are observed,  

the determination of which in the computational process becomes very time-

consuming with the increase of the approximation order. 
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(a) (b) (c) 

   

(d) (e) (f) 

   

(g) (h) (i) 

   

(j) (k) (l) 

Fig. 4. Displacements ux , uy , uz , u for CG method (a, d, g, j), for DG method (b, e, h, k), 

percentage difference between CG and DG (c, f, i, l). Results obtained  

for approximation order p = 2 
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(a)  (b) (c) 

   

(d)  (e) (f) 

Fig. 5. Normal stress components σx , σy , σz  for CG method (a, b, c), for DG method (d, e, f). 

Results obtained for approximation order p = 1 

   

(a) (b) (c) 

   

(d) (e) (f) 

Fig. 6. Normal stress components σx , σy , σz  for CG method (a, b, c), for DG method (d, e, f). 

Results obtained for approximation order p = 2 
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Table 2. Number of nodes and degrees of freedom in the test mesh for CGM and DGM 

 

CGM DGM 

Number of 

nodes 

Number of 

degrees of 

freedom 

Number of 

nodes 

Number of 

degrees of 

freedom 

p = 1 1166 3498 20228 242736 

p = 2 7982 23946 50570 606840 

4. Conclusions 

CGM is a much more accurate and faster method in calculating displacements. 

The number of degrees of freedom present in the paper, necessary to determine 

DGM in the computational process, greatly reduces the effectiveness of the method. 

Additionally, the slow convergence of the iterative process leading to a steady-state 

solution makes the situation even worse. DGM reveals its advantages when solving 

hyperbolic equations (e.g. pure advection) or transient problems with dominant 

convection, while in the presented case it does not seem to be a good choice. 
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