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Abstract. Application of the standard boundary element method for numerical solution  

of the bioheat transfer equation requires discretization not only the boundary but also the 

interior of the domain considered. In this paper the variant of the BEM which is connected 

only with the boundary discretization is presented. It is the essential advantage of the 

algorithm proposed in comparison with the classical one. As the example, the problem  

of the pair of vessels (artery and vein) surrounded by the tissue is analyzed, and the tempe-

rature field in the tissue sub-domain is found. 

1. Bioheat transfer equation 

The blood perfusion greatly affects the thermal response of living tissue. From 

the mathematical point of view the problem belongs to the boundary (or boundary 

initial) ones and is described by the partial differential equation called the bioheat 

transfer equation (Pennes equation) and the boundary (or the boundary and initial) 

conditions [1-3]. 

Pennes proposed quantifying heat transfer effects in perfused biological tissue 

by a heat source appearing in the energy equation. The capacity of internal heat 

sources is proportional to the perfusion rate and the difference between the tissue 

teperature  and the global arterial blood temperature. The underlying assumption 

was that all  heat transfer occurs in the capillaries. The Pennes equation has the 

inherent limitation that is cannot simulate the effects of large, widely spaced ther-

mally significat blood vessels and they must be treated separately [2].  

In this paper we cosider the steady state problem and then the Pennes equation 

takes a form 

 [ ] 0)()(:
2

=−∇Ω∈ Q+xTT G c+xT    x
metBBB

λ  (1) 

where: λ is the thermal conductivity, W/mK, Qmet is the metabolic heat source, 

W/m
3
, GB is the blood perfusion rate, m

3
/s/m

3
 tissue, cB is the volumetric specific 

heat of blood, J/m
3 

K, TB is the arterial blood temperature, T denotes the tempera-

ture. The 2D problem is considered, this means x = {x1, x2}. 

The metabolic heat source, as a rule, is treated as a constant value [2], according 

to the environmental conditions (cold, rest, exercise). 
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The capacity of this component changes from 245 to 24500 W/m

3
. 

Equation (1) is supplemented by the boundary conditions 
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wher 
321

Γ∪Γ∪Γ=Γ  is the boundary of the domain Ω, Tb and 
b

q  are the known 

temperature and heat flux, α is the heat transfer coefficient, ∞

T  is the ambient 

temperature, ∂ T/∂ n is the normal derivative. 

The equation (1) can be written in the form 

 0)()(:
2

=−∇Ω∈ Q+xT kxT      x λ  (3) 

where 

 Q+T k=Q   cG=k
metBBB

,  (4) 

From the mathematical point view, equation (3) is the Poisson equation with the 

temperature dependent heat source function. 

2. Boundary element method  

The standard boundary element method algorithm leads to the following  

integral equation [4-6] 
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where ξ is the observation point, B (ξ) ∈ (0, 1], ),( 
*

0
xV ξ  is the fundamental solu-

tion 
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r is the distance between the points ξ and x 
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The heat flaux resulting from fundamental solution can be calculated analytically 
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where 

 ( ) ( )
222111

coscos αξαξ −+−= xxd  (11) 

and ,cos
1
α  

2
cosα  are the directional cosinesof the normal outward vector n. 

In numerical realization of this variant of the BEM the boundary Γ and also the 

interior Ω must be discretized.  

3. Multiple reprocity BEM 

We denote by I the last integral in equation (5), namely 
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If the function ),(*
1

xV ξ  fulfills the equation 
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then using the 2
nd

 Green formula [5] one obtains 
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Because (c.f. equation (3)) 
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therefore 
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where 
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Now, we assume that the function ),(*
2

xV ξ  begin the solution of equation 
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is known and the integral 
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can be transformed to the form 
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where 
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Introducing (20) into (16) one obtains 
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This procedure can be easily generalized. The following sequence of functions is 

defined 
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and then the integral equation (5) can be written in the form 
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This equation contains only the boundary integrals. In order to solve it, the func-

tions ),(* xV
l
ξ  must be known and the adequate series must be convergent [6]. In 

[6] the following formulas are presented 
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The functions ),(
*

xZ
l
ξ  can be calculated in the analytic way (c.f. equations (23)) 
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4. Numerical model 

The boundary is divided into N boundary elements ,jΓ  j = 1, 2,…, N. The inte-

grals in equation (24) are substituted by the sums of integrals over these elements 
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If the parabolic boundary elements are used [4-6] then (Fig. 1) 
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Fig. 1. Parabolic boundary element 
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so 
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The integrals appearing in equation (28) can be written in the form 
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As well known, in the final system of algebraic equations the values of tempera- 

tures or heat fluxes are connected with the boundary nodes. If the following nume-

ration of the bounary nodes r = 1, 2,..., R is accepted then for i = 1, 2,..., R one  

obtains the system of equations (c.f. equation (28)) 
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where for single node r begin the end of the boundary element 
j
Γ  and begin the 

beginning of the boundary element 
1+

Γ
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 we have: 
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for double node r, r + 1: 
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while for the central node r of the boundary element Γj:  
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The system of equations (43) can be written in the form 
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where: 
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Taking into account the boundary conditions (2) the system of equations must 

be rebuilt to the form A Y = F. The solution of this system allows to determine the 

„missing” boundary temperatures and heat fluxes. Next, the temperatures at op-

tional sat of internal nodes can be calculated using the formula 
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5. Example of computations 

The pair of blood vessels (artery and vein) surrounded by the tissue is analyzed 

- Figure 2. The domain considered corresponds to the cross-sectional area of the 

tissue cylinder - Figure 3. Its radius R  is equal to the inverse of the vessel pair 

density and this Krogh-type tissue cylinder is affected only by the blood vessels 

pair which is located in the central part of the domain. 

 

 

Fig. 2. Pair of blood vessels 
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Radius of artery equals R1 = 0.0002 m, radius of vein R2 = 0.0003 m, radius of t 

tissue cylinder R = 0.0015 m, distance between the blood vassels D = 0.0003 m 

(c.f. Figure 3). 

The following boundary conditions have been accepted: 
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Assuming that for artery and vein the Nusselt number Nu = 4 [1, 2] one obtains 

α1 = 5000 W/m
2
 ⋅ K, α2 = 3333.33 W/m

2
 ⋅ K. Thermal conductivity of tissue equals 

λ = 0.5 W/mK, the blood temperatures: TB = 37.5ºC (arterial) TB1 = 37.33ºC  

(artery), TB2 = 37ºC (vein),volumetric specific heat of blood cB = 3.9962 · 10
6
 J/m

3
K. 

The remaining data are following: perfusion coefficient GB = 0.0005425 m
3
/s/m

3 

tissue, metabolic heat source Qmet = 245 W/m
3
 for rest conditions, while GB = 

= 0.01085 m
3
/s/m

3
 tissue, Qmet = 24500 W/m

3
 for exercise conditions [1]. 

 

 
Fig. 3. Cross-section of tissue cylinder 

The external boundary is divided into 60 parabolic boundary elements (120 nodes), 

while the internal boundaries are divided into 8 (16 nodes) and 12 (24 nodes) para-

bolic boundary elements for artery and vein, respectively - Figure 4. In Figure 4 the 

position of internal nodes is also marked. 

The same problem has been solved by Mochnacki and Majchrzak [7] using the 

classical boundary element algorithm and the results obtained are practically the 

same. Summing up, the multiple reciprosity BEM is the effective method of nume-

rical solution of the bioheat transfer equation. 
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Fig. 4. Boundary discretization and internal nodes 

In Figures 5 and 6 the temperature distribution in the tissue domain is shown. 

 

 

Fig. 5. Temperature distribution (rest conditions) 

 

Fig. 6. Temperature distribution (execise conditions) 
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