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Abstract. The aim of this contribution is to formulate two different approaches to the com-

putation of averaged moduli in the equations of the tolerance averaged model of microperi- 

odic linear-elastic composites. In the first approach, which will be called basis function 

approach, we shall use some of the FEM concepts in order to establish the basis functions 

in the Galerkin approximation to the non-stationary periodic cell problem of elastodyna-

mics. In the second approach, which will be called mode shape function approach, we shall 

also use FEM concepts in order to determine functions describing the character of free 

vibrations of the periodicity cell. This approach makes it possible to reduce a large number 

of unknowns occuring in the first approach. 

1. Formulation of the problem 

The subject of considerations is a linear-elastic microperiodic composite with 

a periodicity cell ∆. The exact dynamic behaviour of this composite is governed by 

the well-known equations of motion of the linear elasticity theory 

 0fuu =+−∇⋅∇ &&ρ):(C   (1) 

where ),( t⋅u  is the displacement field at time t, )(),( ⋅⋅ ρC  are ∆-periodic piecewise- 

constant functions representing the elasticity tensor field and the mass density field, 

respectively, and ),( t⋅f  is the external force vector field at time t. Equations (1) are 

assumed to be satisfied in a region Ω occupied by the composite in its reference 

configuration. Moreover, they have non-continuous functional coefficients and that 

is why we look for various simplified models of such composites, which are 

governed by PDE’s with constant coefficients. 

In this contribution we restrict ourselves to the models obtained by an applica-

tion of the tolerance averaging technique to equations (1) [1]. In contrast to the 

known homogenized model of a linear-elastic periodic medium, cf. [2], in the 

framework of the aforementioned model the dispersion phenomena can be ana-

lyzed. Using the tolerance averaging technique and denoting by x a position vector 

in E
3
 we shall apply the averaging operator 
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for every integrable function ).,( tf ⋅  Setting )()( t,t, xuxv 〉〈= , we shall decompose 

the displacement field into the sum u = v + v*, where .0v* =〉〈ρ  Fields ),( t⋅v  and 

),( t⋅*v  will be called the macroscopic and the oscillating parts of the displace-

ment field, respectively. The fundamental idea of the tolerance averaging is to 

supply the pair (v, v*) with the suitable physical background to make it possible to 

treat these fields as an acceptable description of the kinematics of the composite. 

To this end we introduce concepts of slowly varying and periodic like functional 

spaces, denoted by )(TSV∆  and ),(
∆
TPL  respectively, related to a certain tole-

rance system T [1]. We shall formulate the fundamental assumptions of the tole-

rance averaging modelling as certain restrictions imposed on the fields v and v*. 

Namely, away from the boundary of Ω, the macroscopic part ),( t⋅v  of the dis-

placement field must be a slowly varying field, ,)(),( TSVt
∆

∈⋅v  and the oscillating 

part ),( t⋅*v  of the displacement field must be a periodic like field, 

).()(
∆
TPLt, ∈⋅*v  The direct consequence of the second from these assumptions is 

that in a certain neighborhood of every periodicity cell ∆(x), situated away from 

the boundary of Ω, the oscillating part ),( t⋅*v  of a displacement field can be 

approximated by a certain ∆ -periodic field ),( t,⋅
*

x

v  i.e. ),,(),( tt yvy*v
*

x

≅  

y∈∆(x). Let us introduce a functional space 
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It can be shown [1] that equations (1), under a decomposition u = v + v* and 

assumptions ),()( TSVt,
∆

∈⋅v  ),()( TPLt,
∆

∈⋅*v  imply the following periodic cell 

problem for the oscillating part ),( t⋅*
x
v  of a displacement field: 

For given )(⋅v and ∆(x) ⊂ ∆ find ∆-periodic field )(
~

),( 1 ∆∈⋅
per

Ht*
x
v  such 

that the variational equation 
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holds for every ∆-periodic test field  ).()(
1

∆∈⋅
per

H
~~

v  
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For details the reader is referred to [1]. As a rule, it is impossible to find the exact 

solution to the above problem. That is why we shall look for an approximate 

solution to (CP) in the form (here and hereafter summation over A = 1,..., N holds) 

),( tyv*
x

= ),,()( th xqy
AA     ),(xy ∆∈           A = 1,...,N 

where N

A

A
h

1
}{
=

 is a basis which determines a certain N-dimensional subspace 

W
h
(∆) in )(

~1
∆

per
H  and q

A
(x,t), A = 1,...,N, are new kinematical unknowns.  Hence, 

)(⋅
A

h  are continuous ∆-periodic linear independent functions satisfying condition 

.0=〉〈
A

h  Moreover, it can be shown [1] that ),( tA
⋅q  are slowly varying fields, 

),()( TSVt,
∆

∈⋅q  ).,...,(
N

qqq
1

=  Under aforementioned assumptions and taking 

into account the above approximation to (CP), from the procedure given in [1] we 

obtain the averaged model of elastodynamics for periodic solids represented by the 

following system of equations 
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 (2) 

for slowly varying fields ),( t⋅v  and ),( tA
⋅q  where A, B run over 1,...,N (summa-

tion convention holds) and where for the sake of simplicity we have assumed that 

),( t⋅f  is a slowly varying function. Equations (2) have constant coefficients which 

will be called the averaged moduli. 

The aim of this contribution is to propose two different approaches in the 

method of computations of the averaged moduli in Eq. (2). In both cases we have 

to determine the basis functions { } .

1

N

A

A
h

=
 This problem was discussed in [3] for the 

second order scalar elliptic equation. Similarly as in [3] we shall adapt some of the 

FEM concepts in order to establish the basis functions h
A
, A = 1,...,N. For the sake 

of simplicity we shall restrict considerations to the plane problems by assuming 

that all fields are independent of x
3
. Hence by x, y we shall denote position vectors 

on the Ox
1
 x

2
-plane. 

2. Computation of the averaged moduli 

2.1. Basis function approach 

Let Λ be a Bravais lattice in E
2
 with the vector basis {d

1
, d

2
} and let ∆ be a two- 

dimensional periodicity cell related to Λ in the sense given in [4]. For example, 
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∆ can be a parallelogram in E
2
 with a center at x = 0. The proposed approach will 

be realized in eight steps. The FEM concepts and the terminology are based on 

those given in [5]. 

Step 1. Periodic partition of ∆ into symplexes 
e
∆ , e = 1,...,E: 

,U
v

e

e

∆=∆             ∅=∆∩∆
fe

    for every     e ≠ f 

The above partition determines in ∆ a certain set N of what are called the global 

nodes, cf. [5], p. 198. 

Step 2. Numbering of global nodes in ∆
v

 

N = {y
1
,..., y

n
} 

We define 

N
o
: = N ∩ ∆ = {x

a
 ∈N: x

a
∈ ∆} 

as a set of what will be called the internal nodes; hence N \ N
o 
will be  referred to as 

a set of boundary nodes. 

Definition. Nodes y
a
, y

b
∈ N will be called equivallent, y

a 
~y

b
, if and  only if 

y
a 
 − y

b
∈ Λ 

Conclusion. If y
a
 ∈ N

o
 then y

a
 is equivalent only to itself, i.e. the equivalent 

classes of nodes belonging to N
o
 are singletons. 

The vertexes of every 
e
∆  will be called the local nodes in ,

e

∆  cf. [5], p. 198. 

Step 3. Numbering of local nodes in every ,

e

∆  e = 1,...,E 

N
e
 = }{

321
,,

eee
yyy  

Hence 

i

e
y = ,∑

=

n

a

i
a

)e(
a

B

1

y     i = 1,2,3 

where }B{

)(e
i

a
 is for every e a Boolean 3× n matrix, cf. [5], p. 202. 

 

Step 4. Numbering of sets of equivalent nodes. 

N/~ ={N
1
,N

2
,...,N

N+1
} 
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Hence N
K
, K = 1,...,N + 1, are disjoined sets of equivalent nodes, N + 1 < n. 

Setting IK: = {a ∈{1,..., n}: x
a
 ∈ N

K
} we have N

K
: = {y

a
 ∈ N: a ∈ IK}. 

Step 5. Formation of the local interpolation function, cf. [5], p. 206. 

The local interpolation functions will be denoted by e

i
ψ , e = 1,..., E, i = 1,2,3, 

and defined by conditions: 

1) ,)(
i

i

j

e δψ ε

ι
=y  

2) 0=e

i
ψ  in every ,

e

\ ∆∆  

3) e
i

ψ  are linear in every .

e

∆  

 

Step 6. Formation of the global interpolation functions, cf. [5], p. 212.  

The global interpolation functions are denoted by φa (y), ,∆∈y  and will be 

defined for every ∆∈y  by 

 })({sup)(

3

1

)(

∑
=

=

i

e

i

i

a

e

a
B

e
yy ψφ  (3)  

Hence φa satisfy conditions 

(i) φa∈ ),(
o
∆C  

(ii) b
ab

a
δφ =)(y   for every a,b ∈ {1,...,n}, 

(iii) φa  are linear in every ,

e

∆  e = 1,...,E. 

Step 7. Formulation of the periodic interpolation functions. 

Periodic interpolation functions will be denoted by ),(y
K

~

φ  y∈ ,∆  K = 1,..., 

N + 1, and defined by 

 ∑
=

φ=φ

n

a

aKaK
B

~

1

),()( yy   y∈∆         K = 1,..., N + 1 (4) 

where }{
Ka

B is a Boolean (N + 1) × n matrix given by  



 ∈

=

otherwiseif

Iaif
B K
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Conclusion. The global interpolation functions )(
~

⋅
K

φ  satisfy condition 
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∑
+

=

=φ

1

1

1)(

N

K

K

~

y  

and hence are linear dependent. 
 

Step 8. Formulation of basis functions h
A
 in equations (2). 

The above functions will be defined by 

 ),()()()()(
11
yyyyy

++
φα+φα=
AA

~~
h

AA

A       y∈ ,∆       A = 1,...,N 

where αA,  A = 1,...,N, are constants and ),()( lOl
AA

∈α=α  l = diam∆. Moreover 

 ,0
11

=〉φ〈α+〉φ〈α
++ AA

~~

AA
         A = 1,...,N 

Hence 0=〉〈 Ah  for A = 1,...,N. 

Conclusion. Functions {h
1
, h

2
,...,h

N
} constitute the basis in the N-dimensional 

subspace W
h
(∆) in ).(∆

1

per
H
~

 

Remark. Functions h
A 
are determined up to a multiplicative constant and, for 

example, can be assumed in the form 

 ,

11
〉φ〈φ−〉φ〈φ=

++ AAAA

~
/)(

~
l

~
/)(

~
l)(hA

yyy           A = 1,...,N (5) 

After determining the basis functions h
A 
we can calculate, for the known 

 ∆-periodic )(⋅C  and )(⋅ρ , the averaged moduli ,h
B

〉⋅〈∇ C  ,〉∇⋅⋅〈∇
BB
hh C  

〉〈 BAhhρ  and ,〉〈
A
hρ  which are constant coefficients in equations (2). 

It can be shown that the averaged gradients of the shape functions h
A
 vanish, 

i.e. 0=〉〈∇ Ah  for A = 1,...,N. 

2.2. Mode shape function approach 

In most cases the basis function approach to the computation of the averaged 

moduli leads to a large number N of functions q
A
, A = 1,...,N, and hence the model 

obtained may not constitute a proper tool for the analysis of special elastodynamic 

problems. To eliminate this drawback we shall propose an alternative approach, 

which leads to the concept of what are called mode shape functions. Roughly 

speaking, they are vector functions which are ∆-periodic, have the mean values 

over ∆ equal to zero and describe free periodic vibrations of the periodicity cell.  

The above functions, restricted to the first m free vibrations modes, will be denoted 
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by ),(⋅
A
g  A = 1,...,M. To determine the above functions we shall assign to the 

periodic cell problem (CP) the eigenvalue problem given by 

Find an eigenvalue λ and a corresponding eigenfunction )(
~

)( 1 ∆∈⋅
per
Hg  

for the variational equation 

 0
~

::
~ =〉⋅〈−〉∇〈∇ gvgv ρλC  (ECP) 

which has to hold for every ∆-periodic test field  )(
~

)(~
1

∆∈⋅
per
Hv  

As a rule, it is impossible to find the exact solution to the above problem. That 

is why we shall look for an approximate solution to (ECP) by the FEM approach. 

To this end we introduce the M dimensional subspace H
h
(∆) in )(

~1
∆

per
H  with the 

basis φa, a = 1,...,n, which has the same form as that introduced in the subsec- 

tion 2.1. It follows that we shall look for an approximate solution to the eigenvalue 

problem (ECP) in the form 

∑
=

=

n

a

aa

1

)()( xaxg φ                                             (6) 

for unknown vector coefficients aa. Assuming test functions related to (ECP) in the 

form 

∑
=

=

n

b

bb

1

)(~)(~ xaxv φ                                             (7) 

for arbitrary vector coefficients 
b
a
~ , after substituting (6), (7) to (ECP), we obtain 

the eigenvalue problem 

∑∑
==

〉〈⋅〉⋅〈 =∇⋅∇

n

b

bba

n

b

bba

11

ρ aa φφλφφ C ,          a = 1,...,n                  (8) 

for a = (a1,..., an)∈R
2n
 and λ∈R.  Let a = (a

1
,..., a

m
) and (λ

1
,..., λ

m
), where 

a
1 
= ),...,( 11

1 naa ,...,a
m
 = ),...,(

1

m

n

m
aa , be the m-tuples of the first m eigenvectors and 

corresponding m eigenvalues, m < n, of the above problem. It follows that, for 

every s = 1,...,m, functions 

∑
=

=

m

a

a

s

a

s

1

)()( xaxg φ ,          s = 1,...,m                                   (9)  
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describes periodic free vibrations of the periodic cell of the composite under con-

sideration. The approximate solution to (CP) will be now assume in the form (here 

and hereafter summation over s = 1,...,m holds) 

),( tyv*
x

= ,),()( tw xyg
ss     ,)(xy ∆∈           s = 1,...,m                    (10) 

where, as a rule, m << n. Fields ),( tws ⋅ , s = 1,...,m, are new kinematical unknowns 

and )(⋅sg are the known continuous ∆-periodic linear independent functions satis-

fying condition 0=〉〈 sg . Moreover, it can be shown [1] that ),( tws ⋅  are slowly 

varying fields, ).(),( TSVtw
∆

∈⋅
s  

Substituting the RHS of (10) into (CP), after some manipulations, we obtain the 

system of equations for w
s
. Using the procedure described in [1] we arrive finally at 

the averaged model for periodic solids represented by the system of equations 

ms

srrssrrs

ssss

ww

ww

1,...,

::::

):(

=

=∇〉〈∇+〉∇〈∇+⋅〉〈+〉⋅〈

〉〈=〉〈−〉〈−〉⋅〈∇+∇〉〈⋅∇

0vggvggg

fgvgv

g CC

CC

&&&&

&&&&

ρρ

ρρ

     (11) 

After determining the system of vectors ,

s

a
a  s = 1,...,m, a = 1,...,n, and 

applying the formula (9), we can calculate, for the known ∆-periodic )(⋅C  and 

)(⋅ρ , the averaged moduli 〉⋅〈∇ Csg , 〉〈 sgρ , 〉⋅〈 rs ggρ , 〉∇〈∇ rs gg ::C , which 

are constant coefficients in equations (10). 

Conclusions 

The new elements and informations related to the modelling of micro-periodic 

solids, which have been presented in this contribution, can be summarized as fol-

lows: 

1
o

 By enclosing the concept of the periodic interpolation functions to the known 

formulation of the FEM method, two approaches to the calculation of the 

averaged moduli in the tolerance averaging equations for microperiodic solids 

have been proposed.  

2
o

 In the first approach, named the basis function approach, the averaged moduli 

are calculated on the basis of functions h
A
 as certain periodic interpolation func- 

tions. This approach leads to the large number of equations in the periodic cell 

problem (CP).  

3
o

 In the second approach, named the mode shape function approach, the calcula-

tion of the averaged moduli is realized by the representing a solution to the 

periodic cell problem (CP) in the form of the eigenfunctions related to a certain 
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eigenvalue problem. Functional coefficients )(⋅sg  in this form are certain 

approximation to free vibrations of the periodic cell. The mode shape function 

approach makes it possible to reduce a large number of equations the periodic 

cell problem (CP). 

The examples of application of the proposed procedures will be published else- 

where. 
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