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Abstract. The methods of inverse problems solution appearing in the domain of steady heat 

transfer  are discussed. In particular, the inverse boundary problems (the identification of 

the boundary values on the part of the surface limiting the system analyzed) and the inverse 

parametric problems (reconstruction of the thermophysical parameters of the material) are 

considered. Such problems have been solved using (on the stage of numerical computations) 

the boundary element method. The different methods of inverse problems solution have 

been applied. So, the direct method, the least squares method in the basic version, the same 

method supplemented by the regularization terms, the method of the energy minimization 

and also the algorithm basing on the sensitivity coefficients have been taken into account. 

The computations can been realized for different numbers and positions of the control 

points, the possible disturbances of 'measured' temperatures have been also taken into 

account. The remarks concerning the exactness and effectiveness of successive methods of 

the inverse problem solution have been formulated. The theoretical considerations are sup-

plemented by the examples of computations verifying the correctness of the algorithms 

proposed. 

1. Inverse boundary problems 

The inverse boundary problems concern the identification of the boundary 

condition on the part Γ1 of the surface Γ limiting the system analyzed [1-7]. 

The unknown quantity on Γ1, this 

means the temperature (Dirichlet 

condition), heat flux (Neumann 

condition) - Figure 1, or heat 

transfer coefficient in the Robin 

condition can be determined 

under the assumption that the 

additional information concer- 

ning the values of temperature at 

the set of internal points from the 

domain considered is also given. 
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Fig. 1. Identification of boundary heat 
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As an example, let us consider the following 2D inverse boundary problem 
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where Tb is the given boundary temperature, qb is the known boundary heat flux,  

∂T /∂n denotes the normal derivative at the boundary point x, α is the heat transfer 

coefficient, T
 ∞
 is the ambient temperature. The aim of investigations is to determine 

the boundary heat flux on Γ1.  

In order to solve the problem considered the least squares criterion, as a rule, is 

applied, e.g. [1, 5-7] 
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where T
 i
 is the calculated value of temperature at the internal point ξ

i
, Td

i
 is the know 

(e.g. resulting from measurements) temperature at the same internal point. The basic 

sum of squares can be supplemented by the regularization term [5, 6] 
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where γ is the regularization parameter, qk is the unknown heat flux at the boundary 

point x
 k 
∈Γ1, N1 is the number of points on boundary Γ1. The solution of inverse 

problem consists in the searching of functional (2) or (3) minimum. 

If the energy minimization method is used, then the minimum of functional [4] 
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with the following restrictions 
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should be determined. In equation (5) ε is a certain small number.  
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2. Application of the BEM in the steady heat transfer problems 

The boundary integral equation for the Laplace problem is of the form [5, 6, 9, 

10] 

 Γ=Γ+ ∫∫
ΓΓ

d) ( )  ,(d)( ) ,() ( ) ( **
xTxqxqxTTB ξξξξ  (6) 

where ξ ∈ Γ is the observation point, B (ξ)∈(0, 1), T
* (ξ, x) is the fundamental 

solution [5, 6, 9, 10] and ./),ξ(),ξ( nxT xq ∂∂−=
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In numerical realization, the boundary Γ is divided into N constant boundary 

elements Γj. Additionally, we assume that N1 nodes belong to the boundary Γ1, the 

nodes N1+1,..., N2 belong to Γ2, the nodes N2+1,..., N3 belong to Γ3, while nodes 

N3+1,..., N - to the boundary Γ4. The integrals in equation (6) are substituted by 

sum of integrals and then for constant boundary elements one obtains (i = 1,..., N) 
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while Tj = T (x
 j 
), qj = q (x

 j 
). The temperatures at internal nodes (i = N+1,..., N+M) 

are calculated using the formula  
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3. Algorithms of inverse boundary problems solution 

Taking into account the boundary conditions (1), the system of equations (7) 

can be written as follows 
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or in the matrix form 

 PBYB
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where 
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The form of matrixes B1, B2 is presented in [10]. It should be pointed out that the 

vector P contains the unknown boundary heat fluxes q1, q2,..., qN 1.  

From the system (14) results that 
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Using the formulas (15), (17) one obtains 
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The dependencies (18), (19), (20) are introduced into equations (10) and then 
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If the direct method of inverse problem solution is applied, then the number of 

internal points ξ
i
, in which the temperature Td

i
 = Td (ξ

i
) is known must be equal to the 

number of boundary nodes in which the heat fluxes are unknown, this means 

M = N1. Using the formula (21) one obtains the following system of equations 
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or in the matrix form 
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d
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This system allows to determine the values of boundary heat fluxes qj, j =1,..., N1. 

     In the case of least squares method application, the formula (21) is introduced  

into (2) (or into (3)) and next using the necessary condition of minimum of several 

variables function one has 
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or in the matrix form 
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In the case of energy minimization method the minimum of functional (4) (after 

the discretization of the boundary Γ), corresponds to the minimum of following 

function [10] 
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Taking into account the given boundary conditions (2) one has 
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or using the equation (17) 
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where (c.f. equation (18)) 
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So, the energy minimization method leads to the solution of problem 
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where Wi j, Zi are described by formulas (22) and (24). 

The algorithm of unknown boundary heat flux identification constructed on the 

basis of the least squares criterion (3) in which the sensitivity coefficients are 

introduced is the following [5]. At first, we solve the basic boundary problem for the 

arbitrary assumed values of local heat fluxes along the boundary Γ1, for instance 

qk = 0 for k = 1, 2,..., N1. The solution obtained we denote by T
 *
, q

*
 (temperatures 

and heat fluxes). The function T is expanded into Taylor's series in the vicinity of 

point T
 * i
 taking into account the first and second components, this means 
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are the sensitivity coefficients [5, 10]. 

In order to determine the sensitivity coefficients the governing equations (1) 

should be differentiated with respect to qk, k = 1, 2,..., N1, namely 
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where Vk (x) = −λ ∂Zk (x)/∂n. One can notice that the problems described by (36) 

are correctly posed and should be treated as a direct one. So, we can use the same 

algorithm as in chapter 2 and in this way to find the set of sensitivity coefficients 

at internal points ξ
i
 for which the temperatures are known (measured) - see Figu- 

re 1. These coefficients are collected in the matrix R 
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We put (34) into (3). Next we differentiate the criterion (3) with respect to the 

unknown heat fluxes ql, l = 1, 2,..., N1 and using the necessary condition of minimum 

we obtain 
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The system of equations (36) can be written in the matrix form, namely 
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where I is the identity matrix. 
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4. Inverse parametric problems 

Let us consider the problem of thermal conductivity identification. This para-

meter can be treated as a constant value but, as a rule, it is the temperature depen- 

dent function. The thermal conductivity is determined on the basis of physical 

experiments. From the mathematical point of view the identification of this 

parameter on the basis of the knowledge of temperature field in the domain 

considered belongs to the group of the parametric inverse problems [2, 5]. 

As an example, the steady temperature field in domain Ω is analyzed 

 0)]()([: =∇λ∇Ω∈ xTT  x  (40) 

where λ is the temperature dependent thermal conductivity 

 cT bT aT ++=
2
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while the coefficients a, b, c are unknown. On the boundary Γ the Dirichlet condi-

tion in the form 

 
b
TxTx =Γ∈ )(:  (42) 

is accepted. Additionally, it is assumed, that the value of thermal conductivity for 

temperature Td is known, namely λd = λ(Td) and also two temperatures at internal 

points, this means Td
1 
= T (x

1
) and Td 

2 
= T (x

2
) are given. The aim of investigations is 

to determine the values of a, b, c in the equation (41). The algorithm of the problem 

considered solution basing on the BEM is presented in [10]. 

5. Examples of computations 

The problem of identification of heat flux between casting and continuous casting 

mould (CCM) will be presented. We consider the symmetrical fragment of CCM 

shown in Figure 2. The thickness of CCM equals 0.05 m, diameter of cooling pipe 

equals 0.02 m. The thermal conductivity: λ = 330 W/mK. In Figure 2 the boundary 

conditions and also the temperatures at the internal nodes of CCM are shown. These 

temperatures correspond approximately to the temperatures obtained from the direct 

problem solution under the assumption that the heat flux between casting and CMM 

equals −3 ⋅ 10
5
 W/m

2
. In Figure 3 the discretization of the boundary is presented. 

In order to identify the boundary heat flux the least squares criterion in which the 

sensitivity coefficients are introduced has been applied (c.f. equation (37)). So, five 

additional problems connected with the sensitivity analysis of temperature field with 

respect to q1, q2, q3, q4, q5 have been solved. In Figures 4 and 5 the distributions of 

sensitivity functions R1 and R5 are shown. 
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Fig. 2. Domain considered Fig. 3. Discretization 

 

 

 

Fig. 4. Distribution of function R1  Fig. 5. Distribution of function R2 

                                 

Fig. 6. Identified values of boundary heat flux for different values of parameter γ 
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The best solution of the inverse problem has been obtained for regularization 

parameter γ = 10
−2
 (Fig. 6) and then we find 

 995.299999
54321
−===== qqqq q  (43) 

Summing up, the least squares criterion with the sensitivity coefficients and regu-

larization parameter leads to the exact and efficient algorithm of the boundary heat 

flux identification. 
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