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Abstract. In this paper the motion of the slab has been analysed. The equation of motion 

for the slab was solved numerically. The stability of the obtained solutions was determined 

with regard to the dependence of the casting speed and the intensity of heat exchange in the 

primary and secondary cooling zone. 

1. Introduction 

The equation of motion for the analysed slab - caster system is a partial differ-

ential equation of second order with appropriate unique conditions (geometrical, 

boundary and initial). The motion of the slab is caused by the vibrations of the 

caster. The caster has a given harmonic motion δ = δ0 sin(ωt), which has an effect 

on the slab with a specified axial load s(x,t), per unit length. This load is the sum 

of the normal interactions between the solidifying slab layer and the caster, and 

the friction conditions between the slab and the caster [1, 2]. The withdrawal force 

of the slab is realised by a pulling roller. The rolls are pressed down on to the slab 

with normal force and they produce the determined withdrawal force via the coef-

ficient of rolling friction. The angular velocity of the rolls is chosen purposely to 

obtain the required velocity of slab withdrawal w0 (casting speed). The constant 

casting velocity is realised when the angular velocity of the rolls is constant in 

respect to slide absence. It is assumed that the displacements of the liquid and 

solid parts of the slab are the same, and that the total load of the slab is carried 

only by the solidified part of the slab. It is also assumed that solidified part of the 

slab is viscoelastic with linear elastic (E
s
) and viscous (µ

s
) characteristics. Taking 

into account the above assumptions, one can obtain the equation of motion for 

forced vibrations in the following form: 
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where: 

u = u(x,t) - displacement of the slab, 

 ρ
 l
, ρ

s
 - density of the liquid and solid phase, respectively, 

 A
l
, A

s
 - cross-section area of the liquid and solid part of the slab, respectively. 

The boundary conditions of the equation are specified by the free and of the slab 

and the end restrained by the pulling roller action (x = L), which gives: 
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Initial conditions are equal to 
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An effective solution of the above equation, due to its of complication can only be 

obtained with the use of approximation methods [1, 5]. The commonly used 

Galerkin’s method was applied in this paper. According to this method, the solu-

tion of equation (1) takes the form of the following series 
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 are basic functions chosen to fulfil given bound- 

ary conditions. The predicted solution is substituted into the motion equation (1), 

then consecutively multiplied by all the basic functions and finally integrated in 

the interval (0,L). Thus the equation of motion is transformed into a system of 

ordinary differential equations in relation to unknown time functions Si(t). The 

time functions are solved in relation to the second time derivative. This system can 

be written in a matrix form 

 = + +S GS HS Kɺɺ ɺ  (5) 
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where the presented matrixes are: ; ; ,
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2. The numerical solution of the system of ordinary differential 

equations. Analysis of the stability of the solutions 

It follows from the conducted tests that only the two first terms of the series 

should be taken into account. The summing the other terms of the series has practi- 
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cally no significant meaning, because those quantities are very small. For the two 

first terms of series the system (5) takes the form: 
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The coefficients, present in the above equation for the two first terms of the series, 

can be written as: 
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Substituting the dependence: 
1 1 2 2 1 1 3 2 2 4

; ; ; ,S y S y S y y S y y= = = = = =
ɺ ɺɺ ɺ  into the 

system (7) transforms the system of second order differential equations into 

a system of first order differential equations 
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such a system is solved numerically with the use of the Runghe-Kutha-Merson 

method. Unknown time functions and their derivatives are determined, and the 

displacement of the slab in an arbitrary cross-section is calculated according 

to equation (4). 

The solutions are stable or unstable [1, 3, 4] with regard to the dependency on 

the value of given real parameters of motion and initial conditions of the solution. 

In general, stability is defined as follows: if defined motion exists with given 

initial conditions and the motion differs insignificantly from the motion without 
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disturbances after small changes in the initial conditions or after small disturban-

ces then the motion is said to be stable. If small changes in the initial conditions or 

small disturbances cause a radical change in motion, the motion is unstable. It is 

essential to estimate the stability of motion, because unexpected disturbance 

always occur when we give determined motions to mechanical systems and we 

want to know if they cause an undesirable radical change in motion. Let us take 

into account the forced motion of a system described by heterogeneous linear 

equations: 
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Let us consider two solutions xi1(t) and xi2(t) close to each other. Their difference 

is expressed by equation: 
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After differentiating and substituting the right side of equation (10), we obtain: 
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This means that the test of stability of the heterogeneous system leads to a test of 

stability of an appropriate homogeneous system. Particular solutions to this system 

are searched for in the form of function: 
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obtain the system of algebraic equations: 
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A characteristic determinant of this system is that it should equal zero: 
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The radicals of the characteristic equation are determined by the solution of deter-

minant (15). The sign of the real part of these radicals decides the stability of sys-

tem. If all the radicals of the characteristic equation have negative real parts, all 

particular solutions drop to zero when time increases unlimitedly. The same hap-

pens in case of the general solution. This solution is asymptotically stable if the 

difference between two arbitrary solutions drops to zero while time increases to 

infinity. If only one radical has a real part greater than zero, then the appropriate 

solution increases unlimitedly while t → ∞, so the general solution is unstable. 

The above analysis allows us to estimate the stability of the system solution (9) 

on the basis of knowing the character of the radicals in the characteristic equation. 

That yields: 
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Radicals λi are determined from the above equation and the stability of the solution 

is educed from the sign of the real part of these radicals. 

3. Examples of computations 

The system slab - caster is considered. The caster has a given oscillating motion 

δ0sinωt. Tangent force s(x,t), directed towards the slab, is determined by equation: 
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and ρl is the density of the slab liquid phase, g - gravitational acceleration, fs, fk  

- coefficients of static and kinetic friction, respectively, v - relative velocity of the 

slab in relation to the caster. The tangent force depends on the relative velocity of 

the slab in relation to the caster and on the load force developed by the solidifying 

slab layer. These quantities were specified in paper [7]. Young’s modulus and 

coefficient of viscosity, occurred in the above equation, depend on temperature 

and are determined by equations [2, 6]: 
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where: E(T) - modulus of elasticity, Pa, TK - temperature of slab solidification, K, 

TE - ambient temperature and T = T(x,y) - slab temperature expressed by the follo- 

wing relationship: 
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Temperature of the slab surface Tp(x) and thickness of the solidifying slab layer 

η(x) is determined in the way shown in the paper [7]. 

Numerical computations were made for given values of system parameters: 

ρ
s
 = 7850 kg/m

3
, δ0 = 0.01 m, ω = 1.2 rad/s, µ

k
 = 5 ⋅ 10

7
 Ns/m

2
, L = 8,0 m, Lkr = 

= 0.7 m, fs = 0.1; fk = 0.3; temperature distributions along the length of the slab 

were determined for the following values of parameters: Ls = 8 m, λM = 349 W/mK,  

TE = 323 W/mK, TE = 323 K, TK = 1808 K, Tw = 293 K, a = 0.14 m, hM = 0.04 m, 

L = 268 ⋅ 10
3
 J/kg, λM = 349 W/mK, λ = 29 W/mK; β = 800 W/m

2
K; c = 

= 800 J/kgK; αw = 1500 W/m
2
K; αE = 2750 W/m

2
K. 

The stability of the system was tested in terms of its dependence on the inten- 

sity of heat exchange in the primary cooling zone (coefficient αW - cooling in 

caster) and in the secondary cooling zone (coefficient αE - cooling with direct wa-

ter spray) for different withdrawal velocities of the slab. The zones of stable and 

unstable solutions were determined (Fig. 1). They change insignificantly with the 

change in the value of αW coefficient. 
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Fig. 1. Zone of stable and unstable solutions of the slab - caster system 
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