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Abstract. The Manhattan distance between two points is defined as the sum of the hori- 

zontal distance along streets and the vertical distance along avenues. We derive an exact 

formula for the number of zigzag distances travelled by a salesman on a finite N × N, square 

lattice. In the limit N → ∞, we obtain the density function of distances on a unit square. 

1. Introduction 

Consider random geometrical points, i.e. points with uncorrelated positions, 

occupied vertices of a square lattice. We address the following question: what is 

the mean distance 
N
r  between a given reference point and other randomly chosen 

point, where points are distributed uniformly. 

This is essentially the problem of geometrical importance but the distribution of 

the quantity 
N
r  is also important in certain physical and computational problems. 

For example in physics and in optimisation theory the quantity 
N
r  is important in 

determining the statistical properties of systems composed of objects whose inter-

actions are proportional to the Manhattan distance between objects. In the field of 

computer science the pairwise distance between processors is the number of verti-

cal communication hops plus the number of horizontal communication hops. That 

is, the allocation of processors to parallel programs in a supercomputer grid con-

sisting of a large number of processors also relays on the Manhattan distances 

between processors [1]. 

The sum of the pairwise distances between points successively visited by the 

salesman is strongly correlated with the total length of a path required to complete 

his task. Thus, the knowledge of the Manhattan distance distribution can yield 

a valuable information needed for estimating the optimal path in the travelling 

salesman problem (TSP) [2, 3], a typical, well-known optimization problem which 

consists of finding the shortest closed tour connecting all cities in a map. 
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2. Results 

We begin with finite value of N. In Figure 1 we present such a case for N = 11. 

 

Fig. 1. A-A (open circles) and B-B (filled circles) are pairs of points on a square lattice of 

size N = 11. The Manhattan distances: RN(A,A) < N,  and N ≤ rN(B,B) < < 2N − 2 

Consider a pair of points A-A, whose distance q < N. It is easy to see, that the total 

number of such pairs is equals to a number of arrangements of A-A segment on the 

lattice, i.e. 
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Multiplication by 2 in Equation (1) comes from the segments obtained by counter-

clockwise rotation of the A-A segments. Similar consideration for B-B segments 

yields 
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An auxiliary quantity p = 0,1,..., N − 2, in Equation (2) measures the distance 

between right end of the segment B-B and the upper right corner of the square. 

Collecting the terms in Equations (1) and (2) we obtain the following formula for 

the number of pair of points with the shortest path’s length equals to q 
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After some elementary algebra the above equation can be rewritten with the help 

of variable xq = q/N 
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Fig. 2. The Manhattan-distance multiplicities given by Equation (3) 

Now we consider the limiting case of a dense line packing and we assume that 

the number of lines, separated by δ  goes to infinity in a way that N ⋅ δ = 1. Within 

this limit, from Equation (4), we get final expression for the density of zigzag 

distances on a unit square: 
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3. Conclusions 

For the both, discrete (Equation (3)) and continuous (Equation (5)), distribu-

tions of Manhattan distances on squares we can compute the moments of an arbi-

trary order. Especially, the mean distance 3,/2Nr
N
=  for the discrete case, and its 

value is 2/3 for the continuous distribution. In a different way the same average 
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pairwise distance value was obtained and reported in [4]. The second moment 

equals to (5N
2
 − 2)/9 and it is related to the minimization of the average of the 

squares of the pairwise distances in clustering applications. 

Similar distributions of distances can be derived for lattices with different 

symmetries, such as triangular or honeycomb. 
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