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Abstract. In the paper the freezing process of biological tissue subjected to the action of 

two internal spherical cryoprobes is discussed. The problem is strongly non-linear because 

the parameters appearing in the mathematical model of the process are temperature- 

-dependent. In order to solve the task considered, the finite element method for 3D domain 

oriented in the Cartesian co-ordinate systems has been used. In the final part of the paper 

the example of computations is shown. 

1. Governing equations 

From the mathematical point of view the biological tissue freezing process can 

be described by the following equation [1-4] 
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where c is the specific heat per unit of volume, λ is the thermal conductivity, 

LV is the volumetric latent heat, fS is the frozen state fraction at the point conside- 

red, T, { }1 2 3
, , ,x x x x= t denote temperature, spatial co-ordinates and time. 

If we assume that the dependence between and the fs(x,t) temperature for the 

interval [T2, T1] (the beginning and the end of freezing) is known then 
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and the equation (1) can be written in the form 
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is called the substitute thermal capacity of intermediate region. The energy equa-

tion in the form (3) can be extended on the whole domain considered, because for 

( )1
: 0,
S

T T f T> =  while for ( )2
: 1
S

T T f T< =  and ( ) ( ).C T c T→  This property 

of equation (3) constitutes a base of the so-called fixed domain approach [5, 6]. 

Summing up, the equation discussed describes the heat transfer processes in the 

whole conventionally homogenous domain. The problem is strongly non-linear 

- both the parameters C(T) and λ(T) are temperature dependent [1, 7]. 

On the cryoprobes surfaces Γ1 and Γ2 (c.f. Figure 1) the Dirichlet boundary 

condition can be accepted 
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where TC is the cryoprobes temperature. On the arbitrary assumed external surface 

Γ0, limiting the domain considered the no-flux condition is assumed 
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where ∂T(x,t)/∂n is the normal derivative at the boundary point x. 

For t = 0 the initial temperature field is known, namely  
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0 : , 0t T x T x= =  (7) 

 

        Fig. 1. Domain considered 

2. Finite element method 

The problem discussed has been solved using the finite element method. At first 

the time grid is introduced 
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The weighted residual criterion for equation (3) and domain Ω oriented in Car-

tesian co-ordinate system has the following form [6] 
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− ∈ =   and w(x) is the weighting function. 

Using the Gauss-Green-Ostrogradski theorem, after a certain mathematical 

manipulations one has 
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where 
0 1 2

.Γ = Γ ∪Γ ∪Γ  

In order to solve the equation (10), the domain Ω of biological tissue has been 

divided into N finite elements and the integrals in equation (10) have been substi-

tuted by the sum of integrals over the finite elements 
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In this paper the 10-nodal tetrahedral finite elements have been used - Figure 2. In 

order to transform the finite element Ωi into the standardized tetrahedron the fol-

lowing substitution can be introduced 
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The unknown function T is approximated in the following way 
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where s

k
T  are the nodal values of temperature in the finite element considered, 

while: 
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are the shape functions. The weighting function w is defined as follows 
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where 
k
β  are the unknown coefficients. 

 

 

Fig. 2. 10-nodal tethrahedral element 

Finally, one obtains the following system of equations [6] 
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where K is the conductivity matrix, P is the thermal capacity matrix, W is the ma-

trix connected with boundary conditions, ∆t is the time step. 
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3. Results of computations 

The dimensions of domain considered are presented in Figure 1. The computa-

tions have been done using the MSC PATRAN/MARC software. Initial tempera-

ture of biological tissue equals 37°C, the beginning of the freezing process corre-

sponds to the temperature T1 = −1°C, the end of the freezing process corresponds 

to the temperature T2 = −8°C, time step ∆t = 1 s. In Figure 3 the temperature field 

in domain considered for times 5 and 60 s is shown. 

 

 

Fig. 3. Temperature field in domain considered 
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Figures 4 illustrates the temperature distribution in the distinguished cross section 

for time 60 s. 

 

  
Fig. 4. Temperature distribution for time 60 s 

Summing up, the MSC PATRAN/MARC software allows to solve the strongly 

non-linear problem connected with the modelling of biological tissue freezing 

process. 
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