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Abstract. The type II maximum likelihood (ML-II) is considered in this paper. The
problem of finding the ML-II prior is too complex, in many cases. But we propose some
methods of approximation ML-II prior. Both noninformative and informative ML-II
priors are considered. If no information is given about unknown prior then we will
construct a proper density which is approximately ML-II prior. The theorem which let
us approximate ML-II prior belonging to the given class of densities is formulated. The
methods of approximation ML-II prior are simply and easy to applied. All required
calculations are done by MCMC algorithms.

1. Introduction

Let X € R™ be an observable random variable with density f(z|6) > 0, for
some unknown 8 € © C RP. The choice of prior distribution 7 for parameter
6 € O is considered, here. 7 has a density with respect to a o-finite measure v

m(dz) = m(z)v(dz)

For simplicity, 7 will be used to denote both the distribution and the density
of parameter 6 € ©O.

Definition 1. w(6) is called the improper density if [ ©(df) = cc.
©

Methods of prior density choice are the most criticized point of Bayesian ana-
lysis. The choice of prior distribution is most often done subjectively. It is
justified with the simplicity of calculations of some characteristics from po-
sterior densities. There are noninformative and informative priors. Methods
of noninformative prior choice are: Jeffreys prior, invariance under repara-
metrization and conjucate priors. Informative priors are chosen by maximum
entropy method and ML-IT method.

Jeffreys prior is based on Fisher Information given by I(6),

1(8) = E[2esfelO - _ p[2log (=lo))
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Jeffreys prior w(#) is given by
m(6) o [det 1(8)]%°

It is usually improper density.
Noninformative prior satisfies invariance under reparametrization if there
exist functions ®, ¥, g such that, likelihood function f(z|6) satisfies

f(]6) = (¥(8) — ¢(z))
The uniform distribution is chosen for parameter ¥(#). Then the prior 7(8) is

7(6) o | det(2L2)]

A family of densities is said to be conjugate priors if for every prior density
7(6) from this class the posterior density 7(8|z) also belongs to this class.
Maximum entropy method chooses prior distribution by maximizing functional
E(r)

E(r) = —glog[f((’)]ﬂ(d(?)

This method will be able to applied if the likelihood function f(z|#) is not
given. It is used to choose prior distribution when some prior moments or
prior quantiles are known.

In the paper ML-II method is considered. ML-II method chooses a prior
distribution 7 by maximizing marginal density f(z)

f(z) = / f(z16)r(d) (1)
C]

It is a generalization of maximum likelihood method. The choice of prior di-
stribution depends on the vector z € R"™. For that reason it is more objective
method than the others. It was introduced by Good [4,5]. Berger and Berliner
[1] analyzed robustness properties of ML-II posterior estimators. Sivaganesan
and Berger [11] utilized ML-II method in Bayesian robustness studies. They
determine the ranges of posterior quantities. Chaturvedi [2] utilized ML-II pro-
cedure to robust Bayesian analysis of the linear model. For e-contamination
class the ML-II posterior mean was estimated. Sivaganesan [10] found ranges
of the posterior mean, posterior median and posterior mode and calculated the
supremum of the posterior mean squared error for the ML-II posterior mean.
Moreno and Carmona [8] considered the ML-II prior selection related to se-
veral ¢-contamination classes. They considered the class of all distributions
with known some quantiles and the class of unimodal distributions with some
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specified quantiles. Lee [7] applied ML-II procedure to estimating hyperpara-
meters involved in conjugate priors. Waal and Nel [14] utilized ML-II method
to derive a prior distribution from e-contamination class multivariate distribu-
tions and multivariate normal distributions. Gosh and Kim [6] proposed some
robust Bayes estimators of finite population mean using ML-II priors.

In the paper the theorems which allows us to approximate ML-II prior are
formulated. The noninformative ML-II priors are considered, only.

2. An approximation of noninformative ML-II priors

If we have no information about parameter § then O is the set on which
likelihood function f(x|@) is defined.

Definition 2. Let © denote the set defined as follows

O=1{0co: f(zb) = sup f(z10)} (2)

From the general theorem [8] it results that for all prior distributions 7= we
have
[ faloye(d6) < fiald) 3)
(C]
Equality holds in (3) if and only if prior distribution 7 is concentrated on the
set ©. From this theorem it follows that If no information is given about prior
distribution 7, then ML-II prior is concentrated on the set O. In most cases
the set © consists of one point, only. Hence ML-II prior is concentrated on one
point.
The set O is difficult to directly estimating, in many cases. From the idea

of Simulated Annealing algorithm we propose the method of approximating
ML-II prior.

Theorem 1. If 7(6|\) is a proper continuous density satisfying
m(0]1A) oc exp{Af(z|6)} (4)

where A > 0,
then the marginal density f(z|\) = [ f(z|0)7(dB|)) is the non-decreasing func-
(S]

tion of the parameter A satisfying

Jim f(z|)) = f(z|6) (5)



64 P. Kopciuszewski

Proof
From the assumption of the theorem it follows that the density f(z|\) is

1
[exp{\f(z
]

f(zln) = ) e/ f(zl) exp{Af(el0)}(dd)  (6)

The derivative f (z|)\) after parameter ) is

(_{ f*(20) exp{Af(x10)}v(df) G{ exp{Af(z|6)}v(df) - [({ f(x0) exp{Af(|6)}v(df)]?

[@{ exp{Af(z|0)}v(df)]?
, (7)
The derivative f (z|A) may be written in the form
f(2|A) = Exf*(216) - [E-f(<]6))" (8)
Hence
f(zln) 20 (9)

We conclude that the density f(z|)) is non-decreasing function of parameter
A. Let O be some v-measurable sets satisfying

(:j C @k
V(@k) >0 forall k<o
Jim v(Or\O®) = 0 (10)

Let the function g(z|A, k) be defined as follows

| f(2l6) exp{A[f(2|6) - f(z|8)]}w(d8) + f(a|B)(®r)

glzlr k) = 2 ~ ~ (1)
] exp{Alf(26) — f(«]6)]}v(d6) + v(Ok)
0\
From (11) we see that for all A < oo
lim g(alA,K) = f(z]A) (12
Notice that f(z|0) < f(:vla) for all @ € ©. Thus for all £ < oo
lim g(a|),k) = f(z[6) (13)

Hence
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A]jm f(z|A) = /\]jm k]jm g(z|\, k) = klim Alim g(z|A k)
Jim_ f(218) = f(16) (14)

The theorem is thus proved.
Notice that theorem 1 will be able to applied when f(z|6) is not differentiable
at the point 6 € ©. From theorem 1 two corollaries may be concluded.

Corollary 1. If we have no information about prior distribution m then the
density (4) is approximately ML-II prior.

Corollary 2. If (4) is improper density then ©*(0|)) is approzimately ML-II
prior

7T (0)A) x exp{Af(z]0)}be+(8) (15)
where ©* denote the set satisfying
® c o
/7r*(d0|/\) < oo (16)

o

3. An estimation of some characteristics from posterior density

If prior density 7(8|)) satisfies condition (4) then posterior density m(6|A, z)
will satisfy
m(8A,z) o f(z|6) exp{Af(x|6)} (17)

We use Hastings-Metropolis algorithm to generate the sample from posterior
density m(6|A,z). Suppose that q(0(k), 0(k+1)) is a transition density from the
state 8) € © to the state 85+ € ©. In the k-th step we generate a point
9+1) from the density ¢(8*),8(*+1)) and next we accept the point g(k+1)
with probability

g(80+D, 09)) 7(z]6(4+1)) exp{ A f(z]64+D)}

o0 g1y _ o
o870 = mind g 60 0) F ) expr f(algny ()
If the density ¢(8%), 8(k+1)) satisfies
g(8W, 6%+ oc f(z]0*+D)) (19)

then acceptance probability (%), (k+1)) will be

a(6®,0%+Y) = min{exp{A[f(2|0*+V)) - f(zl6®)]}, 1} (20)
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But if the density g(8%),8(k+1)) satisfies
g(6®,6%4) o exp{Af(z[0* 1)} (21)
the the acceptance probability a(8(*),8(-+1)) will be

z|g(k+1)
fﬁ(glcw(k)) 1) (22)

Some characteristics from posterior density (8|, z) will be able to estimated
if the sample {#(*)} is generated.

a8 §*+1)) = min{
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