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Abstract. The heterogeneous domain Ω being the composition of two domains (Ω1, Ω2) is 

considered. It is assumed that in the first domain Ω1 the internal volumetric heat sources act. 

On the basis of knowledge of heating (cooling) curves at the selected set of Ω2 the capacity  

of internal heat sources in Ω1 is identified. The inverse problem formulated in this way is  

interesting from the practical point of view. For example, a such situation takes place during 

the casting solidification. The evolution of latent heat in the casting domain causes that in Ω1 

the internal heat sources appear, while in the mould domain this component of energy equation 

is equal to 0. Additionally the measurements of temperature in the mould are essentially  

simpler from the technical view-point. In the paper the theoretical base of the problem and  

the examples of numerical realization are discussed. 

1. Mathematical description of the process 

The temperature field in the domain Ω is described by the system of equations 
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where Te (x, t) is the temperature in sub-domain Ωe, ce is the volumetric specific 

heat, λe is the thermal conductivity, x and t denote the spatial co-ordinates and 

time, correspondingly. Additionally it is assumed that Q2 = 0. 

On the contact surface between Ω1 and Ω2 the continuity condition is given 
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where ∂/∂n denotes a normal derivative, R is the thermal resistance between Ω1 

and Ω2. In the case of an ideal contact the last condition takes a form 
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On the outer surface of the system the Robin condition is taken into account 
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where α is the heat transfer coefficient, Ta is the ambient temperature. 

For t = 0 the initial temperature field is known, namely 
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where T10 and T20 are the initial temperatures in sub-domains Ω1 and Ω2. 

So, the following boundary-initial problem is considered 

 



















===

−=
∂

∂
−Γ∈








∂

∂
−=

∂

∂
−

=
Γ∈

∇=
∂

∂
Ω∈

+∇=
∂

∂
Ω∈

202101

2

2

20

2

2

1

1

21

12

2

2

2

2

22

11

2

1

1

11

,:0

)(:

:

:

:

TTTTt

TT
n

T
x

n

T

n

T

TT

x

T
t

T
cx

QT
t

T
cx

a
αλ

λλ

λ

λ

 (6) 

The task above formulated allows to find the basic (direct) solution which is 

necessary in order to solve the inverse problem. The details concerning the identi-

fication of source function Q1 will be discussed in the next chapter. 

2. Identification of heat source 

Let Z denotes the sensitivity function [1-3] Z = ∂T/∂Q. The distribution of this 

function results from the solution of the following boundary-initial problem 
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A small difference in the model (7) appears if the thermal resistance R ≠ 0. 

Because the temperature field is continuous, it can be expanded in a Taylor series 

about an arbitrary but known value Q
*
. For linear problems, only the first deriva-

tive is nonzero. Thus 
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The algorithm for estimating Q involves minimizing [1-3] 
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Insertion (9) into (10) leads to the formula 
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The condition of the functional (11) minimum gives 
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After simple transformations we obtain 
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where Q̂  is an estimate of the unknown heat source. 

3. Examples of computations 

The presented solution concerns the 1D problem. The segment x ∈ [0, 0.05] 

corresponds to sub-domain Ω1, while the segment x ∈ [0.05, 0.1] corresponds to Ω2. 
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The thermophysical parameters of Ω1 and Ω2 equal [4] c1 = 4.5 MJ/m
3
K, 

λ1 = 25 W/mK, c2 = 1.7 MJ/m
3
K, λ2 = 1.5 W/mK. Thermal resistance R = 0.5 m

2 
K/W. 

For x = 0: qb = 0, for x = 0.1 α = 150 W/m
2 

K, Ta = 40
o
C. Initial temperatures  

of Ω1 and Ω2 equal 950
o
C. The value of identified source term Q1 = 10 000 W/m

3
 

has been assumed. In Figure 1 the temperature profiles in domain Ω2 for selected 

times are marked. 
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Fig. 1. Temperature profiles in Ω2 

The sensitivity functions in domain Ω1 change with time in a linear manner. In 

Figure 2 the course of U = Z ⋅ 10
5
 for x = 0.002 is shown. The courses of function 

U at the set of selected points from Ω2 are shown in Figure 3. 
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Fig. 2. The course of U = Z ⋅ 105 for x = 0.002 Fig. 3. The courses of U = Z ⋅ 105 (1 - x = 0.052, 

2 - x = 0.062, 3 - x = 0.076) 

In numerical realization (FEM [5]) the domain Ω has been divided into 50 lin- 

ear finite elements, time step ∆t = 1 s. The cooling curves at the six control points 
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(sensors, xi = 0.052, 0.06, 0.068, 0.082, 0.09, 0.098) are registered until t = 5000 s. 

One can see that the control points have been located in Ω2. The results presented 

have been obtained after 3 iterations ).0pointstart( 0

1
=Q  In Table 1 the results of 

identification for undisturbed temperatures (1) and disturbed temperatures (2) 

(standard deviation σ = 1) are presented. The exact values of temperature have 

been found on the basis of direct problem solution for Q1 = 10 000 W/m
3
. 

 
Table 1 

Case Number of simulation 
1
Q̂  

(1) undisturbed 1 10000.0000000105 

(2) disturbed 

2 9902.39010983652 

3 10054.6491645594 

4 10032.2666852779 

5 9901.82198847453 

6 9879.76202753673 

7 10072.3062107584 

8 10080.1764011397 

9 9821.18162937548 

10 10070.1936981191 

Mean value 9981.474792 

 

In the second part of computations the sensors have been located close to the con-

tact surface (xi = 0.052, 0.054, 0.056, 0.058, 0.06, 0.062). The results of the same 

computations as previously are collected in Table 2. 

 
Table 2 

Case Number of simulation 
1
Q̂  

(1) undisturbed 1 10000.0000000094 

(2) disturbed 

2 10069.2175620262 

3 9969.97385610996 

4 9926.51279352947 

5 9954.12962328423 

6 9977.85661863327 

7 9936.62552787668 

8 10095.0554646099 

9 10065.1874372992 

10 9994.96145354483x 

Mean value 9998.952034 
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In Table 3 one can see the identification of source term using only one sensor for 

x = 0.052. The estimation of Q1 is sufficiently good. 

 
Table 3 

Case Number of simulation 
1
Q̂  

(1) undisturbed 1 9999.99999998933 

(2) disturbed 

2 9690.91715169449 

3 9772.6970197913 

4 10014.2785637644 

5 9873.5608442589 

6 9893.20484309091 

7 9895.01989919977 

8 9956.68484585822 

9 9883.59864863115 

10 9900.45371262416 

Mean value 9875.601725 

 

It should be pointed out that the authors of this paper have at one's disposal the 

solutions of similar inverse problems for the case of 2D domains. They will be 

presented in the doctoral theses prepared by A. Metelski. 

Summing up, it is possible to identify the source term Q1 in the heterogeneous  

domain on the basis of knowledge of temperature field only in the sub-domain for 

which Q2 = 0. In the case of constant value of Q1 the algorithm proposed is quite 

effective and exact, at the same time the number of iterations is rather small. 

 

The paper has been sponsored by KBN (Grant No 3 T08B 004 28). 
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