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Abstract. A new macroscopic model for the non-stationary heat transfer processes in  

a periodic hexagonal-type anisotropic rigid conductor is formulated. The main aim of this 

contribution is to show that the macroscopic properties of this conductor are transversally 

isotropic. The tolerance averaging technique as a tool of macroscopic modelling is taken 

into account [1]. 

Introduction 

In this note a new tolerance averaged model for the non-stationary heat transfer 

processes in hexagonal-type rigid conductor is proposed. The main result of this 

note is to show that, under a certain condition, the overall properties of the conduc-

tor under consideration are transversally isotropic even if constituents of a conduc-

tor are anisotropic. Moreover, we are to show that in a certain special case of the 

introduced transversally isotropic model of the conductor under consideration  

a certain averaged scalar parameter called averaged relaxation time can be defined. 

This parameter plays a similar role as a classical relaxation time for the hyperbolic 

heat transfer problems in the case of homogeneous conductors. The general form 

of the averaged equations will be specified in order to describe the hexagonal-type 

periodic rigid conductor which material and geometrical properties are invariant 

over under 2π/3-rotation with respect to the center of an arbitrary hexagonal cell. 

The scope of this paper is restricted to the formulation of 3D-nostationary hyper-

bolic heat propagation model equations. 

A certain transversally isotropic model for heat propagation in the hexagonal-

type rigid conductors was formulated in [2]. However, in this paper the Fourier 

heat propagation law is taken into account. Results obtained in this note will be  

a certain generalization of those obtained in [2] to the case of hyperbolic heat 

transfer in aforementioned conductors based on the Cattaneo heat propagation law. 

Similar problems for periodic lattice-type conductors was discussed in [3] and in 

the framework of hexagonal-type conductors in [4]. 
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1. Denotations 

Throughout the paper we use the superscripts A,B which run over 1,...,N, super-

scripts a,b which run over 1,...,n and subscripts r,s which run over 1, 2, 3, summa-

tion convention with respect to these indices is assumed to hold. Let Oz be an axis 

normal to the periodicity Ox1x2 -plane. In the direction of the z-axis the conductor 

will be treated as homogeneous. At the same time every plane z = const. is as-

sumed to be a plane of a material symmetry. Symbol ∂ stands for the partial de- 

rivative with respect to the z-coordinate and ∇  is a gradient with respect to 

x = (x1,x2). An arbitrary hexagonal cell of the composite under consideration will 

be denoted by 2
, R∆ ∆ ⊂ . By ( )f x  we denote the integral mean value over 

( ) 2
, R∆ = + ∆ ∈x x x  of an arbitrary integrable function ( )f ⋅  defined in R

2
. 

2. Formulation of the problem 

The starting point of the considerations is the well known 3D-heat transfer 

equation in the honeycomb type periodic conductor which in this note will be 

rewritten in the form 

 ( ) ( ) ( ) ( ) ( )3
, , , , , , , , ,z t q z t c z z t f z tθ∇ + ∂ − =q x x x x x&   (1) 

where ( )3,q=q q  is the total flow and ( ) ( )0 1
, , , , ,z t z R t t tθ ⋅ ∈ ∈ , is the tempera-

ture field and ( ), ,f z t⋅  represents a heat sources. In order to describe the hyper- 

bolic heat propagation in the periodic conductor under consideration we shall 

apply a following Cattaneo-type constitutive law 

 ( ) ( ) ( ) ( ), , , , , ,z t z t z tτ θ+ = − ∇q x q x A x x&   (2) 

where τ is a relaxation time and A is a positive definite symmetric matrix repre-

senting an anisotropic conductivity tensor assumed in the form  

 ( )
( )

33

0

0 A

 
=  
 

A x
A x   (3) 

for A33 = const and x ∈ R
2
. Moreover, according to the periodicity of the hexagonal 

structure under consideration, we assume that ( )⋅A  and ( )c ⋅ , are ∆-periodic func-

tions and that they for composite materials attain constant values in every constitu-

ent of the conductor. 

The aim of the note is to formulate a certain averaged model of the heat propaga-

tion described in on a micro-level by equation (1) and Cattaneo-type constitutive 

law given by (2). 
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3. Tool of modelling 

As a tool of modelling the tolerance averaging technique will be taken into ac-

count. To this end we shall assume that the temperature field has the form 

 ( ) ( ) ( ) ( ) ( )0
, , , , , , ,

A A
z t z t g W z tθ θ= + ∈∆y y y x y x   (4) 

where averaged temperature field ( ) ( )
10

, , , ,z t c c z tθ θ
−

⋅ = ⋅  and fluctuation variables 

( ), ,

A
W z t⋅  are assumed to be slowly varying functions for every ( ) ( )0 1

, ,z t R t t∈ ×  

and represent a new basic unknowns. Moreover, ( ) ,,...,1, NAg A =⋅  are postulated a 

priori ∆-periodic functions, usually called shape functions, and have to satisfy 

conditions 0, 0
A A

g cg= =  and .0=
A
gA  We also define the averaging 

operation 

 ( ) ( )
( )

1
f f d

∆

=
∆
∫
x

x y y   (5) 

where f is an arbitrary integrable function. It can be proved, cf. [2], that under the 

above denotations the following system of equations with constant coefficients 

 

( )

0 2 0 0

33

2

33

0

A A

A B B A B B A B B A B B

A A

A c c g W f f

cg g W cg g W g g W A g g W

g f f g

θ θ θ τ θ τ

τ

θ τ

∇⋅ ⋅∇ + ∂ − − +∇ ⋅ ⋅∇ = +

+ + ∇ ⋅ ⋅∇ − ∂ +

+ ∇ ⋅ ⋅∇ = − +

A A

A

A

&& &&

& &&

&

  (6) 

holds. Since the shape functions depend on the period length l and satisfy condi-

tions ( ) ( )Ag O l⋅ ∈ , ( ) ( )Al g O l∇ ⋅ ∈ , where ( )O l  is the known ordering symbol, 

coefficients A Bg gA  and A B
cg g  in Eqs. (4) are of an order l

2
 and hence the 

above model equations describe the effect of microstructure size on the averaged 

properties of the conductor. It is worthy noting that the known homogenized 

models of a periodic solid is not able to describe the above effect. In the next 

section we are to formulate a certain necessary conditions under which model 

equations (6) are isotropic. 

4. Basic assumption 

Let us denote by G the system of all shape functions taking into account in 

every special problem. Moreover, let Q represents a pertinent 2π/3-rotation related 

to the certain center of the representative periodicity cell and let 
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( ) ( ){ }:G g g G≡ ⋅ ⋅ ∈
Q Q

 for ( ) ( ) ,g g≡ ∈∆
Q

y Qy y . In this contribution we shall 

restrict our considerations to the case of hexagonal-type composites satisfying the 

following two assumptions. 

Assumption 1. The material structure of the conductor is invariant under 

2π/3-rotations with respect to the center of an arbitrary hexagonal periodic-

ity cell; it is mean that ( ) ( ) ( ) ( ),

T
c c= =A Qy QA y Q Qy y  for every ∈∆y . 

Assumption 2. The set G is invariant under 2π/3-rotations with respect to the 

center of an arbitrary hexagonal periodicity cell; it is mean that G G⊂
Q

. 

In the next section we are to discuss some consequences of the above assumptions. 

5. Analysis of the isotropic properties of the model equations 

Now we shall outline the line of approach leading from Eqs. (6) to the transver-

sally isotropic averaged model equations. To this end we shall introduce  

a new enumeration of the shape functions and fluctuation variables. Let us observe 

that the natural consequence of the Assumption 2. is that the system G of all shape 

functions is divided onto the disjoint sum 
1 2

...

n
G G G G= ∪ ∪ ∪  of classes 

, 1,...,
a

G a n= . Every class Ga consists either by one or three elements. Hence, in 

every class Ga, shape functions will be denoted by 1 2 3
, ,

a a a

g g g  and interconnected 

by formulas ( )2 1

a a

g g=
Q
, ( )3 2

a a

g g=
Q
. At the same time let 

1 2 3
, ,

a a a

W W W  denote 

fluctuation variables related to shape functions 
1 2 3
, ,

a a a

g g g , respectively. If Ga 

consists of only one element we have 
1 2 3

a a a

g g g= =  and we admits situations, in 

which one shape function posses three different indices. At the same time formula 

(4), for every ( )0 1
, ,z R t t t∈ ∈ , will be rewritten in the form 

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

0

1 1 2 2

3 3

, , , , , , , ,

, , ,

a a a a

a a

z t z t g W z t g W z t

g W z t

θ θ= + + +

+ ∈∆

x x y x y x

y x y x

  (7) 

Bearing in mind a representation (6) of temperature field we are to introduce 

new fluctuation variables. To this end define [ ]1
1,0 ,=t  2

1/ 2, 3 / 2 , = − t  

3
1/ 2, 3 / 2 = − − t , and 1 1 2 2 3 3

, ,=∈ =∈ =∈t t t t t t% % % , where ∈ denotes the Ricci 

tensor, i.e. tensor related to the π/2-rotation. Now we can introduce new variables 

 1 2 3

1 2 3 1 2 3
, , 1,...,

a a a a a a a a

U W W W V V V a n= + + = + + =V t t t   (8) 

It can be proved that (8) is an invertible transformation and using the formula 

 1 2 3

1 2 3
/ 3, /3, /3, 1,...,

a a a a a a a a a

W U W U W U a n= + = + = + =t V t V t V   (9) 
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we can determine new fluctuation variable fields ( ) ( ),
a a

U ⋅ ⋅V  by old fluctuation 

variable fields ( ) ( ) ( )1 2 3
, ,

a a a
W W W⋅ ⋅ ⋅ . Introducing variables (8) into the model 

equations (6), we obtain the following alternative form of model equations: 

 

0 2 0 0 0

33

2

2 2 2 3

0 2

2 2 2 3

:
a a

ab b ab b ab b ab b a

T
ab b ab b ab b a ab b a

A c c f f

h U c U a U a U f

θ θ θ τ θ τ

θ

 ∇ ⋅ ⋅∇ + ∇ + ∂ − − = + 

 + + + ∂ =  

 + + + ∇ + ∂ = − 

A B V

H V C V A V B A V f

&& &&

&& &

&& &

  (10) 

The term :
a a  ∇ B V  in the first from Eqs. (10) will be called the fluctuation term. 

By applying a similar approach to that introduced in [3] it can be proved that  

coefficients 
2 3 2
, ,

ab ab ab
A A C  and 

2

ab
H  are isotropic and have the following isotropic 

representations: 

 
2 2 2 3 3 3

2 2 2 2 2 2

ˆ ˆ, ,

ˆˆ , ,

ab ab ab T ab ab ab T

ab ab ab T ab ab ab T

a a a a

c c h h

= + ∈ = + ∈

= + ∈ = + ∈

A 1 A 1

C 1 H 1

% %

%%

  (11) 

for a certain pairs ( ) ( ) ( ) ( )2 2 3 3 2 2 2 2

ˆˆ ˆ ˆ, , , , , , ,
ab ab ab ab ab ab ab ab

a a a a c c h h%% % %  of constants. At 

the same time the mean value A  of conductivity tensor A is transversally 

isotropic and has the following isotropic representation 

 a=A 1   (12) 

for a certain positive constant α. Moreover the fluctuation term has the following 

isotropic representation 

 ( )ˆ: 1 :
a a a a a

b b  ∇ = + ∈ ∇ B V V%   (13) 

for a certain pair ( )ˆ ,
a a

b b%  of constants. Now, bearing in mind results (11), (12), 

(13) we arrive at the equivalent form of model equations (10) 

 

( )

( ) ( ) ( )

( ) ( )

2 0 2 0 0 0

33

2 2 2 3 '33

2 2 2 2 2 2

2 0

3 3 2 2

ˆ

ˆ ˆ ˆ

ˆˆ

a a a a

ab b ab b ab b ab b a

ab ab T b ab ab T b ab ab T b

ab ab T b ab ab T a

a b b A c c f

h U c U a U a U f

h h c c a a

a a b b

θ θ θ τ θ

θ

∇ + ∇ ⋅ + ∇ ⋅ ∈ + ∂ − − =

+ + + =

+ ∈ + + ∈ + + ∈ +

+ + ∈ ∂ + + ∈ ∇ = −

V V

1 V 1 V 1 V

1 V 1 f

% & &&

&& &

% && &% %

%%

  (14) 

for a certain fields f
α

 and f
α

. 
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6. The concept of an averaged relaxation time 

Now, we shall pass to a certain special case of the presented model (14). Na- 

mely we shall restrict considerations to the case in which: 

(1) heat propagates exclusively in the periodicity plane, i.e. ( )0 0
,tθ θ= x , 

( ),a a

U U t= x , ( ),a a

t=V V x , 1,...,a n= , 

(2) heat sources f are slowly varying  functions, i.e. 0
af = and 0

a =f , 

(3) the periodicity cell has a threefold symmetry axis, i.e. 
2 2

0, 0, 0
a ab ab

b h c= = =% % %  

and 
2
0

ab
a =% . 

In a just mentioned special case model equations (14) takes the simpler form 

 

( )2 0 0 0

2 2 2

0

2 2 2

ˆ

0

ˆ ˆˆ ˆ

a a a a

ab b ab b ab b

ab b ab b ab b a

a b b c c f

h U c U a U

h c a b

θ θ τ θ

θ

   ∇ + ∇ ⋅ + ∇ ⋅ ∈ − − =  

+ + =

+ + + ∇ =

V V

V V V 0

% & &&

&& &

&& &

  (15) 

Applying the formal limit passage 0l→ , we arrive at algebraic equations for 

fluctuation variables V
a

 

 0

2

ˆˆ
ab b a
a b θ+ ∇ =V 0   (16) 

It can be shown that this system has a unique solution for V
a

 and first and second 

model equations reduce to a single heat propagation equation 

 2 0 0 0eff
a c c fθ θ τ θ∇ − − =& &&   (17) 

in which ˆ ˆeff a b ab
a a b b M= −  and ab

M  is defined by 
2
ˆ

ab ac acM a δ= . In the case 

under consideration we can introduce constant 

 
0

/c cτ τ=   (18) 

which will be called the averaged relaxation time of the hexagonal-type conductor 

under consideration. Let 

 0
20

t

e
τ

ϑ θ

−

=   (19) 

be the modified temperature field. Hence, Eqs. (17) can be written in the form of 

the following hyperbolic-type heat propagation equation 

 ( ) 0
22 0 0 0

0 0

0

1

4

t

effa c f f e
τ

ϑ ϑ τ ϑ τ
τ

 
∇ − − = + 

 

&&   (20) 
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It can be emphasized that if all constituents have the same relaxation time, i.e. 

τ = τ(x) = const., then τo = τ. 

Conclusions 

The model equations (14) represent an alternative form of the averaged model 

(6) of the hyperbolic heat transfer in hexagonal-type rigid conductors. Model equ-

ations (14) are transversally isotropic and hence we have proved the main thesis of 

this note that the averaged heat transfer response of the hexagonal-type rigid con-

ductors is transversally isotropic. We emphasize that the in a general case compo-

nents of the periodic conductor under consideration can be anisotropic in every 

symmetry plane z = const. 

The obtained equations (14) include as a special case hexagonal-type conduc-

tors for which every cell has a threefold axis of symmetry in every plane 

z = const. In this case in Eqs. (14) terms involving the Ricci tensor drop out. It was 

shown that in a certain special case there exists an averaged temperature field τo 

defined by (18) and the modified temperature field given by (20) for which the 

evolution in time of the temperature field is described by a hyperbolic-type equa-

tion (20). 
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