PARAMETRIZATIONS OF INTEGRALS

Grzegorz Biernat

Institute of Mathematics and Computer Science, Czestochowa University of Technology

Abstract

In the present paper I give parametric formulas of integrals of meromorphic forms in the case of C^{2}.

1. Parametrizations of integrals at finity

Integrals of meromorphic forms occur in the definition of residue. Let us remind then the definition of residue of holomorphic mapping at a point. To retain symmetry with second part of this paper we will limit to the case of \boldsymbol{C}^{2}. Let $f=\left(f_{1}, f_{2}\right)$ be holomorphic mapping in the neighbourhood of point $\alpha=\left(\alpha_{1}, \alpha_{2}\right) \in \boldsymbol{C}^{2}$ with zero isolated at this point; and g holomorphic function in the neighbourhood of point α. As residue of pair g, f at point a we define an integral of the form (s.[1, 2])

$$
\operatorname{Res}_{a} g / f=\frac{1}{(2 \pi i)^{2}} \int_{\Gamma_{a}} \frac{g(z) d z_{1} \wedge d z_{2}}{f_{1}(z) \cdot f_{2}(z)}
$$

where $\Gamma_{a}=\left\{z:\left|f_{1}(z)\right|=\varepsilon,\left|f_{2}(z)\right|=\varepsilon\right\}$ is sufficiently small real two-cycle in the neighbourhood of point α with positive orientation given by nowhere not disappearing on Γ_{α} form $d\left(\arg f_{1}\right) \wedge d\left(\arg f_{2}\right)$.

Calculating of residue we might then reduce to calculus of residues of meromorphic functions of one variable. However if the germ of function f_{1} in point α has reduced decomposition then

$$
f_{1}(z)=f_{11}(z) \ldots f_{1 m}(z)
$$

for z from some neighbourhood of point α. Then (s. [3])

$$
\operatorname{Res}_{a} g / f=\sum_{1 \leq j \leq m} \operatorname{res}_{0} \frac{g \circ \Phi_{j}}{\operatorname{Jac} f \circ \Phi_{j}} \frac{\left(f_{2} \circ \Phi_{j}\right)^{\prime}}{f_{2} \circ \Phi_{j}}
$$

where Φ_{j} is parametrization of the set of zeros of function $f_{1 j}$ defined in the neighbourhood of point 0 at $\boldsymbol{C}, \Phi_{j}(0)=\alpha, j=1, \ldots, m$, a Jac f denote a Jacobian of the mapping f. Thus the integral of meromorphic two-form is reduced to the integrals of meromorphic functions

$$
\int_{\Gamma_{a}} \frac{g(z) d z_{1} \wedge d z_{2}}{f_{1}(z) \cdot f_{2}(z)}=2 \pi i \sum_{1 \leq j \leq m} \int_{C_{j}} \frac{g\left(\Phi_{j}(t)\right)}{\operatorname{Jac} f\left(\Phi_{j}(t)\right)} \frac{f_{2}\left(\Phi_{j}(t)\right)^{\prime}}{f_{2}\left(\Phi_{j}(t)\right)} d t
$$

where C_{j} are sufficiently small positively oriented circles with the center in point 0 at \boldsymbol{C}. Similarly, if the germ of function f_{2} at point α has reduced decomposition, then

$$
f_{2}(z)=f_{21}(z) \ldots f_{2 n}(z)
$$

for z from some neighbourhood of point α, thus

$$
\int_{\Gamma_{a}} \frac{g(z) d z_{1} \wedge d z_{2}}{f_{1}(z) \cdot f_{2}(z)}=2 \pi i \sum_{1 \leq k \leq n} \int_{C_{k}} \frac{g\left(\Psi_{k}(t)\right)}{\operatorname{Jac} f\left(\Psi_{k}(t)\right)} \frac{f_{1}\left(\Psi_{k}(t)\right)^{\prime}}{f_{1}\left(\Psi_{k}(t)\right)} d t
$$

where Ψ_{k} is parametrization of the set of zeros of function $f_{2 k}$ defined in the neighbourhood of point 0 at $\boldsymbol{C}, \Psi_{k}(0)=\alpha, k=1, \ldots, n$.
Applying above parametric formulas we obtain the given relation between integrals of following two-forms (s. [4])

$$
\begin{aligned}
& \text { (*) } \int_{\Gamma_{a}} \frac{g(z) d z_{1} \wedge d z_{2}}{f_{1}(z) \cdot\left(z_{1}-a_{1}\right)^{\sigma} f_{2}(z)}-\int_{\Gamma_{a}} \frac{g(z) d z_{1} \wedge d z_{2}}{\left(z_{1}-a_{1}\right)^{\sigma} f_{1}(z) \cdot f_{2}(z)}=\int_{\Gamma_{a}} \frac{g(z) d z_{1} \wedge d z_{2}}{f_{1} f_{2}(z) \cdot\left(z_{1}-a_{1}\right)^{\sigma}} \\
& \text { for } \sigma \geq 0
\end{aligned}
$$

2. Parametrizations of integrals at infinity

Integrals of rational forms occurs in definition of residue at infinity. At the beginning let us assume the following definitions. For polynomial h of two variables we define polynomial

$$
\widetilde{h}\left(X_{1}, X_{2}\right)=X_{1}^{\operatorname{deg} h} h\left(\frac{1}{X_{1}}, \frac{X_{2}}{X_{1}}\right)
$$

and for point $p=(0: 1: y) \in \boldsymbol{P}^{2}$ its affine image $\widetilde{p}=(0, y) \in \boldsymbol{C}^{2}$.

Let $f=\left(f_{1}, f_{2}\right)$ be polynomial defined on \boldsymbol{C}^{2} of components relatively prime and different then constants while g be arbitrary polynomial of two variables. Let us denote $\sigma=\operatorname{deg} f_{1}+\operatorname{deg} f_{2}-\operatorname{deg} g-3$. The residue of pair g, f at infinity we define by the formula (s. [4, 5])

$$
\operatorname{Res}_{\infty} g / f=-\sum_{c \in\left(C_{1} \cap C_{2}\right) \cap_{\infty}} \operatorname{Res}_{\tilde{c}} \tilde{g} X_{1}^{\sigma} /\left(\tilde{f}_{1}, \tilde{f}_{2}\right) \quad \text { for } \sigma \geq 0
$$

and

$$
\begin{gathered}
\operatorname{Res}_{\infty} g / f=-\sum_{a \in C_{1} \cap l_{\infty}} \operatorname{Res}_{\tilde{a}} \tilde{g} /\left(\tilde{f}_{1}, X_{1}^{-\sigma} \tilde{f}_{2}\right)=-\sum_{b \in C_{2} \cap l_{\infty}} \operatorname{Res}_{\tilde{b}} \tilde{g} /\left(X_{1}^{-\sigma} \tilde{f}_{1}, \tilde{f}_{2}\right) \\
\text { for } \sigma<0
\end{gathered}
$$

where l_{∞} represents the line at infinity over \boldsymbol{C}^{2}, while C_{1} i C_{2} are the closers at \boldsymbol{P}^{2} of curves $f_{1}=0$ and $f_{2}=0$, respectively. In the second part of definition we additionally assume that $(0: 0: 1) \notin C_{1} \cap l_{\infty}$ and $(0: 0: 1) \notin C_{2} \cap l_{\infty}$, what in fact just simplifies the notation (s. [4]). The integrals of forms occurring in expression of residue at infinity we may now parametrize. Let $\sigma \leq 0$ and let $c \in\left(C_{1} \cap C_{2}\right) \cap l_{\infty}$. If the germ of function \widetilde{f}_{1} at point \widetilde{c} has a reduced decomposition, then

$$
\widetilde{f}_{1}(x)=\widetilde{f}_{11}(x) \ldots \widetilde{f}_{1 p}(x)
$$

for x from some neighbourhood of point \tilde{c}. Then

$$
\int_{\Gamma_{\widetilde{c}}} \frac{\widetilde{g}(x) x_{1}^{\sigma} d x_{1} \wedge d x_{2}}{\widetilde{f}_{1}(x) \cdot \widetilde{f}_{2}(x)}=2 \pi i \sum_{1 \leq j \leq p} \int_{C_{j}} \frac{\widetilde{g}\left(\widetilde{\Phi}_{j}(t)\right) t^{\sigma \mu_{j}}}{\operatorname{Jac} \widetilde{f}\left(\widetilde{\Phi}_{j}(t)\right)} \frac{\tilde{f}_{2}\left(\widetilde{\Phi}_{j}(t)\right)^{\prime}}{\widetilde{f}_{2}\left(\widetilde{\Phi}_{j}(t)\right)} d t
$$

where $\widetilde{\Phi}_{j}(t)=\left(t^{\mu_{j}}, \varphi_{j}(t)\right)$ is parametrization of the set of zeros of function $\widetilde{f}_{1 j}$ in the neighbourhood of point 0 at $\boldsymbol{C}, \boldsymbol{C}, \widetilde{\Phi}_{j}(0)=\widetilde{c}, j=1, \ldots, p$, where $\tilde{f}=\left(\tilde{f}_{1}, \tilde{f}_{2}\right)$. Similarly, if the germ of function \tilde{f}_{2} at point \widetilde{c} has reduced decomposition, then

$$
\widetilde{f}_{2}(x)=\widetilde{f}_{21}(x) \ldots \widetilde{f}_{2 q}(x)
$$

for x from some neighbourhood of point \widetilde{c}. Then

$$
\int_{\Gamma_{\tilde{c}}} \frac{\tilde{g}(x) x_{1}^{\sigma} d x_{1} \wedge d x_{2}}{\widetilde{f}_{1}(x) \cdot \widetilde{f}_{2}(x)}=2 \pi i \sum_{1 \leq k \leq q} \int_{C_{k}} \frac{\tilde{g}\left(\widetilde{\Psi}_{k}(t)\right) t^{\sigma v_{k}}}{\operatorname{Jac} \widetilde{f}\left(\widetilde{\Psi}_{k}(t)\right)} \frac{\widetilde{f}_{1}\left(\widetilde{\Psi}_{k}(t)\right)^{\prime}}{\widetilde{f}_{1}\left(\widetilde{\Psi}_{k}(t)\right)} d t
$$

where $\widetilde{\Psi}_{k}(t)=\left(t^{v_{k}}, \widetilde{\Psi}_{k}(t)\right)$ is parametrization of the set of zeros of function $\widetilde{f}_{2 k}$ defined in the neighbourhood of point 0 at $C, \widetilde{\Psi}_{k}(0)=\widetilde{c}, k=1, \ldots, q$. The residue at point $c \in\left(C_{1} \cap C_{2}\right) \cap l_{\infty}$ at infinity we may, in this case, define as

$$
\operatorname{Res}_{c} g / f=-\frac{1}{(2 \pi i)^{2}} \int_{\Gamma_{\widetilde{c}}} \frac{\widetilde{g}(x) x_{1}^{\sigma} d x_{1} \wedge d x_{2}}{\widetilde{f}_{1}(x) \cdot \widetilde{f}_{2}(x)}
$$

Then

$$
\operatorname{Res}_{\infty} g / f=\sum_{c \in\left(C_{1} \cap C_{2}\right) \cap l_{\infty}} \operatorname{Res}_{c} g / f \quad \text { for } \sigma \geq 0
$$

Let $\sigma<0$ and let $a \in C_{1} \cap l_{\infty}$. If the germ of function \widetilde{f}_{1} at point has the reduced decomposition, then

$$
\widetilde{f}_{1}(x)=\widetilde{f}_{11}(x) \ldots \tilde{f}_{1 r}(x)
$$

for x from some neighbourhood of point \tilde{a}. Then

$$
\int_{\Gamma_{\widetilde{\alpha}}} \frac{\tilde{g}(x) d x_{1} \wedge d x_{2}}{\widetilde{f}_{1}(x) \cdot x_{1}^{-\sigma} \widetilde{f}_{2}(x)}=2 \pi i \sum_{1 \leq j \leq r} \int_{C_{j}} \frac{\tilde{g}\left(\widetilde{\Phi}_{j}(t)\right)}{\operatorname{Jac} \widetilde{f}_{I}\left(\widetilde{\Phi}_{j}(t)\right)}\left(\frac{\widetilde{f}_{2}\left(\widetilde{\Phi}_{j}(t)\right)^{\prime}}{\widetilde{f}_{2}\left(\widetilde{\Phi}_{j}(t)\right)}-\frac{\sigma \mu_{j}}{t}\right) d t
$$

where $\widetilde{\Phi}_{j}(t)=\left(t^{\mu_{j}}, \widetilde{\varphi}_{j}(t)\right)$ is parametrization of the set of zeros of function $\widetilde{f}_{1 j}$ defined in the neighbourhood of point 0 at $\boldsymbol{C}, \widetilde{\Phi}_{j}(0)=\widetilde{\alpha}$, and $\widetilde{f}_{I}=\left(\widetilde{f}_{1}, X_{1}^{-\sigma} \widetilde{f}_{2}\right)$. Then the residue at point $a \in C_{1} \cap l_{\infty}$ at infinity we may define as

$$
\operatorname{Res}_{a}^{I} g / f=-\frac{1}{(2 \pi i)^{2}} \int_{\Gamma_{\widetilde{a}}} \frac{\tilde{g}(x) d x_{1} \wedge d x_{2}}{\widetilde{f}_{1}(x) \cdot x_{1}^{-\sigma} \widetilde{f}_{2}(x)}
$$

Then

$$
\operatorname{Res}_{\infty} g / f=\sum_{a \in C_{1} \cap l_{\infty}} \operatorname{Res}_{a}^{I} g / f \text { for } \sigma<0
$$

Similarly, let $\sigma<0$ and let $b \in C_{2} \cap l_{\infty}$. If the germ of function \widetilde{f}_{2} at point \widetilde{b} has reduced decomposition, then

$$
\widetilde{f}_{2}(x)=\widetilde{f}_{21}(x) \ldots \widetilde{f}_{2 s}(x)
$$

for x from some neighbourhood of point \widetilde{b}. Then

$$
\int_{\Gamma_{\widetilde{b}}} \frac{\widetilde{g}(x) d x_{1} \wedge d x_{2}}{x_{1}^{-\sigma} \widetilde{f}_{1}(x) \cdot \widetilde{f}_{2}(x)}=2 \pi i \sum_{1 \leq k \leq s} \int_{C_{k}} \frac{\widetilde{g}\left(\widetilde{\Psi}_{k}(t)\right)}{\operatorname{Jac} \widetilde{f}_{I I}\left(\widetilde{\Psi}_{k}(t)\right)}\left(\frac{\widetilde{f}_{1}\left(\widetilde{\Psi}_{k}(t)\right)^{\prime}}{\widetilde{f}_{1}\left(\widetilde{\Psi}_{k}(t)\right)}-\frac{\sigma v_{k}}{t}\right) d t
$$

where $\widetilde{\Psi}_{k}(t)=\left(t^{v_{k}}, \widetilde{\Psi}_{k}(t)\right)$ is parametrization of the set of zeros of function $\widetilde{f}_{2 k}$ defined in the neighbourhood of point 0 in $\boldsymbol{C}, \widetilde{\Psi}_{k}(0)=\widetilde{b}, k=1, \ldots, s$, and $\tilde{f}_{I I}=\left(X_{1}^{-\sigma} \widetilde{f}_{1}, \tilde{f}_{2}\right)$. Then the residue at point $b \in C_{2} \cap l_{\infty}$ at infinity we may define as

$$
\operatorname{Res}_{b}^{I I} g / f=-\frac{1}{(2 \pi i)^{2}} \int_{\Gamma_{\bar{b}}} \frac{\tilde{g}(x) d x_{1} \wedge d x_{2}}{\text { -}_{1}^{\sigma} \widetilde{f}_{1}(x) \cdot \widetilde{f}_{2}(x)}
$$

Then

$$
\operatorname{Res}_{\infty} g / f=\sum_{b \in C_{2} \cap l_{\infty}} \operatorname{Res}_{b}^{I I} g / f \text { for } \sigma<0
$$

Let us now observe that if $a=b$ and $\sigma<0$, then the residues I and II are connected by equation

$$
\begin{equation*}
\operatorname{Res}_{a}^{I} g / f-\operatorname{Res}_{a}^{I I} g / f=\frac{1}{(2 \pi i)^{2}} \int_{\Gamma_{\tilde{a}}} \frac{\widetilde{g}(x) d x_{1} \wedge d x_{2}}{\widetilde{f}_{1} \widetilde{f}_{2}(x) \cdot x_{1}^{-\sigma}} \tag{}
\end{equation*}
$$

References

[1] Arnold V.I., Singularities of Differentiable Maps, vol. I, Boston 1985.
[2] Griffiths P., Harris J., Principles of Algebraic Geometry, New York 1978.
[3] Biernat G., Représentation paramétrique d'un résidu multidimensional, Rev. Roum. Math. Pur. Appl. 1991, 36, 5-6, 207-211.
[4] Biernat G., Théorème des rèsidus dans \mathbf{C}^{2}, Prace Naukowe Instytutu Matematyki i Informatyki Politechniki Częstochowskiej 2002, 1(1), 19-24.
[5] Biernat G., On the Jacobi-Kronecker formula for a polynomial mapinng having zeros at infinity, Bull. Soc. Sci. Lettres Lódź 1992, 42 (29), XIV, 139.

