Scientific Research of the Institute of Mathematics and Computer Science

PARAMETRIZATIONS OF INTEGRALS

Grzegorz Biernat

Institute of Mathematics and Computer Science, Czestochowa University of Technology

Abstract. In the present paper I give parametric formulas of integrals of meromorphic forms in the case of C^2 .

1. Parametrizations of integrals at finity

Integrals of meromorphic forms occur in the definition of residue. Let us remind then the definition of residue of holomorphic mapping at a point. To retain symmetry with second part of this paper we will limit to the case of C^2 . Let $f = (f_1, f_2)$ be holomorphic mapping in the neighbourhood of point $\alpha = (\alpha_1, \alpha_2) \in C^2$ with zero isolated at this point; and g holomorphic function in the neighbourhood of point α . As residue of pair g, f at point a we define an integral of the form (s.[1, 2])

$$\operatorname{Res}_{a} g \middle/ f = \frac{1}{(2\pi i)^{2}} \int_{\Gamma_{a}} \frac{g(z)dz_{1} \wedge dz_{2}}{f_{1}(z) \cdot f_{2}(z)}$$

where $\Gamma_a = \{z : |f_1(z)| = \varepsilon, |f_2(z)| = \varepsilon\}$ is sufficiently small real two-cycle in the neighbourhood of point α with positive orientation given by nowhere not disappearing on Γ_{α} form $d(\arg f_1) \wedge d(\arg f_2)$.

Calculating of residue we might then reduce to calculus of residues of meromorphic functions of one variable. However if the germ of function f_1 in point α has reduced decomposition then

$$f_1(z) = f_{11}(z) \dots f_{1m}(z)$$

for z from some neighbourhood of point α . Then (s. [3])

$$\operatorname{Res}_{a} g \middle/ f = \sum_{1 \le j \le m} \operatorname{res}_{0} \frac{g \circ \Phi_{j}}{\operatorname{Jac} f \circ \Phi_{j}} \frac{\left(f_{2} \circ \Phi_{j}\right)'}{f_{2} \circ \Phi_{j}}$$

where Φ_j is parametrization of the set of zeros of function f_{1j} defined in the neighbourhood of point 0 at C, $\Phi_j(0) = \alpha$, j = 1,..., m, a Jac f denote a Jacobian of the mapping f. Thus the integral of meromorphic two-form is reduced to the integrals of meromorphic functions

$$\int_{\Gamma_a} \frac{g(z)dz_1 \wedge dz_2}{f_1(z) \cdot f_2(z)} = 2\pi i \sum_{1 \le j \le m} \int_{C_j} \frac{g(\Phi_j(t))}{\operatorname{Jac} f(\Phi_j(t))} \frac{f_2(\Phi_j(t))'}{f_2(\Phi_j(t))} dt$$

where C_j are sufficiently small positively oriented circles with the center in point 0 at **C**. Similarly, if the germ of function f_2 at point α has reduced decomposition, then

$$f_2(z) = f_{21}(z) \dots f_{2n}(z)$$

for z from some neighbourhood of point α , thus

$$\int_{\Gamma_a} \frac{g(z)dz_1 \wedge dz_2}{f_1(z) \cdot f_2(z)} = 2\pi i \sum_{1 \le k \le n} \int_{C_k} \frac{g(\Psi_k(t))}{\operatorname{Jac} f(\Psi_k(t))} \frac{f_1(\Psi_k(t))}{f_1(\Psi_k(t))} dt$$

where Ψ_k is parametrization of the set of zeros of function f_{2k} defined in the neighbourhood of point 0 at C, $\Psi_k(0) = \alpha$, k = 1, ..., n.

Applying above parametric formulas we obtain the given relation between integrals of following two-forms (s. [4])

(*)
$$\int_{\Gamma_{a}} \frac{g(z)dz_{1} \wedge dz_{2}}{f_{1}(z) \cdot (z_{1} - a_{1})^{\sigma} f_{2}(z)} - \int_{\Gamma_{a}} \frac{g(z)dz_{1} \wedge dz_{2}}{(z_{1} - a_{1})^{\sigma} f_{1}(z) \cdot f_{2}(z)} = \int_{\Gamma_{a}} \frac{g(z)dz_{1} \wedge dz_{2}}{f_{1}f_{2}(z) \cdot (z_{1} - a_{1})^{\sigma}}$$
for $\sigma \ge 0$

2. Parametrizations of integrals at infinity

Integrals of rational forms occurs in definition of residue at infinity. At the beginning let us assume the following definitions. For polynomial h of two variables we define polynomial

$$\widetilde{h}(X_1, X_2) = X_1^{\deg h} h\left(\frac{1}{X_1}, \frac{X_2}{X_1}\right)$$

and for point $p = (0:1: y) \in \mathbf{P}^2$ its affine image $\widetilde{p} = (0, y) \in \mathbf{C}^2$.

Let $f = (f_1, f_2)$ be polynomial defined on C^2 of components relatively prime and different then constants while g be arbitrary polynomial of two variables. Let us denote $\sigma = \deg f_1 + \deg f_2 - \deg g - 3$. The residue of pair g, f at infinity we define by the formula (s. [4, 5])

$$\operatorname{Res}_{\infty} g / f = -\sum_{c \in (C_1 \cap C_2) \cap I_{\infty}} \operatorname{Res}_{\widetilde{c}} \widetilde{g} X_1^{\sigma} / (\widetilde{f}_1, \widetilde{f}_2) \quad \text{for } \sigma \ge 0$$

and

$$\operatorname{Res}_{\infty} g / f = -\sum_{a \in C_1 \cap I_{\infty}} \operatorname{Res}_{\widetilde{a}} \widetilde{g} / (\widetilde{f}_1, X_1^{-\sigma} \widetilde{f}_2) = -\sum_{b \in C_2 \cap I_{\infty}} \operatorname{Res}_{\widetilde{b}} \widetilde{g} / (X_1^{-\sigma} \widetilde{f}_1, \widetilde{f}_2)$$

for $\sigma < 0$

where l_{∞} represents the line at infinity over C^2 , while C_1 i C_2 are the closers at P^2 of curves $f_1 = 0$ and $f_2 = 0$, respectively. In the second part of definition we additionally assume that $(0:0:1) \notin C_1 \cap l_{\infty}$ and $(0:0:1) \notin C_2 \cap l_{\infty}$, what in fact just simplifies the notation (s. [4]). The integrals of forms occurring in expression of residue at infinity we may now parametrize. Let $\sigma \leq 0$ and let $c \in (C_1 \cap C_2) \cap l_{\infty}$. If the germ of function \tilde{f}_1 at point \tilde{c} has a reduced decomposition, then

$$\widetilde{f}_1(x) = \widetilde{f}_{11}(x) \dots \widetilde{f}_{1p}(x)$$

for x from some neighbourhood of point \tilde{c} . Then

$$\int_{\Gamma_{\widetilde{c}}} \frac{\widetilde{g}(x) x_{1}^{\sigma} dx_{1} \wedge dx_{2}}{\widetilde{f}_{1}(x) \cdot \widetilde{f}_{2}(x)} = 2\pi i \sum_{1 \le j \le p} \int_{C_{j}} \frac{\widetilde{g}(\widetilde{\Phi}_{j}(t)) t^{\sigma \mu_{j}}}{\operatorname{Jac} \widetilde{f}(\widetilde{\Phi}_{j}(t))} \frac{\widetilde{f}_{2}(\widetilde{\Phi}_{j}(t))}{\widetilde{f}_{2}(\widetilde{\Phi}_{j}(t))} dt$$

where $\widetilde{\Phi}_{j}(t) = (t^{\mu_{j}}, \varphi_{j}(t))$ is parametrization of the set of zeros of function \widetilde{f}_{1j} in the neighbourhood of point 0 at C, C, $\widetilde{\Phi}_{j}(0) = \widetilde{c}$, j = 1,..., p, where $\widetilde{f} = (\widetilde{f}_{1}, \widetilde{f}_{2})$. Similarly, if the germ of function \widetilde{f}_{2} at point \widetilde{c} has reduced decomposition, then

$$\widetilde{f}_2(x) = \widetilde{f}_{21}(x) \dots \widetilde{f}_{2q}(x)$$

for x from some neighbourhood of point \tilde{c} . Then

$$\int_{\Gamma_{\widetilde{c}}} \frac{\widetilde{g}(x) x_{1}^{\sigma} dx_{1} \wedge dx_{2}}{\widetilde{f}_{1}(x) \cdot \widetilde{f}_{2}(x)} = 2\pi i \sum_{1 \le k \le q} \int_{C_{k}} \frac{\widetilde{g}(\widetilde{\Psi}_{k}(t)) t^{\sigma \vee_{k}}}{\operatorname{Jac} \widetilde{f}(\widetilde{\Psi}_{k}(t))} \frac{\widetilde{f}_{1}(\widetilde{\Psi}_{k}(t))}{\widetilde{f}_{1}(\widetilde{\Psi}_{k}(t))} dt$$

where $\widetilde{\Psi}_k(t) = (t^{\nu_k}, \widetilde{\psi}_k(t))$ is parametrization of the set of zeros of function \widetilde{f}_{2k} defined in the neighbourhood of point 0 at $C, \widetilde{\Psi}_k(0) = \widetilde{c}, k = 1, ..., q$. The residue at point $c \in (C_1 \cap C_2) \cap I_{\infty}$ at infinity we may, in this case, define as

$$\operatorname{Res}_{c} g/f = -\frac{1}{(2\pi i)^{2}} \int_{\Gamma_{\widetilde{c}}} \frac{\widetilde{g}(x) x_{1}^{\sigma} dx_{1} \wedge dx_{2}}{\widetilde{f}_{1}(x) \cdot \widetilde{f}_{2}(x)}$$

Then

$$\operatorname{Res}_{\infty} g/f = \sum_{c \in (C_1 \cap C_2) \cap l_{\infty}} \operatorname{Res}_c g/f \quad \text{for } \sigma \ge 0$$

Let $\sigma < 0$ and let $a \in C_1 \cap l_{\infty}$. If the germ of function \tilde{f}_1 at point has the reduced decomposition, then

$$\widetilde{f}_1(x) = \widetilde{f}_{11}(x) \dots \widetilde{f}_{1r}(x)$$

for x from some neighbourhood of point \tilde{a} . Then

$$\int_{\widetilde{g}} \frac{\widetilde{g}(x)dx_1 \wedge dx_2}{\widetilde{f}_1(x) \cdot x_1^{-\sigma} \widetilde{f}_2(x)} = 2\pi i \sum_{1 \le j \le r} \int_{C_j} \frac{\widetilde{g}(\widetilde{\Phi}_j(t))}{\operatorname{Jac} \widetilde{f}_1(\widetilde{\Phi}_j(t))} \left(\frac{\widetilde{f}_2(\widetilde{\Phi}_j(t))'}{\widetilde{f}_2(\widetilde{\Phi}_j(t))} - \frac{\sigma \mu_j}{t} \right) dt$$

where $\widetilde{\Phi}_{j}(t) = (t^{\mu_{j}}, \widetilde{\varphi}_{j}(t))$ is parametrization of the set of zeros of function \widetilde{f}_{1j} defined in the neighbourhood of point 0 at $C, \widetilde{\Phi}_{j}(0) = \widetilde{\alpha}$, and $\widetilde{f}_{I} = (\widetilde{f}_{1}, X_{1}^{-\sigma} \widetilde{f}_{2})$. Then the residue at point $a \in C_{1} \cap l_{\infty}$ at infinity we may define as

$$\operatorname{Res}_{a}^{I} g/f = -\frac{1}{(2\pi i)^{2}} \int_{\Gamma_{\widetilde{a}}} \frac{\widetilde{g}(x) dx_{1} \wedge dx_{2}}{\widetilde{f}_{1}(x) \cdot x_{1}^{-\sigma} \widetilde{f}_{2}(x)}$$

Then

$$\operatorname{Res}_{\infty} g/f = \sum_{a \in C_1 \cap I_{\infty}} \operatorname{Res}_a^I g/f \text{ for } \sigma < 0$$

Similarly, let $\sigma < 0$ and let $b \in C_2 \cap l_{\infty}$. If the germ of function \tilde{f}_2 at point \tilde{b} has reduced decomposition, then

$$\widetilde{f}_2(x) = \widetilde{f}_{21}(x) \dots \widetilde{f}_{2s}(x)$$

for x from some neighbourhood of point \tilde{b} . Then

$$\int_{\Gamma_{\widetilde{b}}} \frac{\widetilde{g}(x) dx_1 \wedge dx_2}{x_1^{-\sigma} \widetilde{f}_1(x) \cdot \widetilde{f}_2(x)} = 2\pi i \sum_{1 \le k \le s} \int_{C_k} \frac{\widetilde{g}(\widetilde{\Psi}_k(t))}{\operatorname{Jac} \widetilde{f}_{II}(\widetilde{\Psi}_k(t))} \left(\frac{\widetilde{f}_1(\widetilde{\Psi}_k(t))'}{\widetilde{f}_1(\widetilde{\Psi}_k(t))} - \frac{\sigma v_k}{t} \right) dt$$

where $\widetilde{\Psi}_k(t) = (t^{\nu_k}, \widetilde{\psi}_k(t))$ is parametrization of the set of zeros of function \widetilde{f}_{2k} defined in the neighbourhood of point 0 in $C, \widetilde{\Psi}_k(0) = \widetilde{b}, k = 1, ..., s$, and $\widetilde{f}_{II} = (X_1^{-\sigma} \widetilde{f}_1, \widetilde{f}_2)$ Then the residue at point $b \in C_2 \cap l_{\infty}$ at infinity we may define as

$$\operatorname{Res}_{b}^{II} g/f = -\frac{1}{(2\pi i)^{2}} \int_{\Gamma_{b}^{-}} \frac{\widetilde{g}(x)dx_{1} \wedge dx_{2}}{x_{1}^{-\sigma}\widetilde{f}_{1}(x) \cdot \widetilde{f}_{2}(x)}$$

Then

$$\operatorname{Res}_{\infty} g/f = \sum_{b \in C_2 \cap I_{\infty}} \operatorname{Res}_b^{II} g/f \text{ for } \sigma < 0$$

Let us now observe that if a = b and $\sigma < 0$, then the residues I and II are connected by equation

(**)
$$\operatorname{Res}_{a}^{I} g/f - \operatorname{Res}_{a}^{II} g/f = \frac{1}{(2\pi i)^{2}} \int_{\Gamma_{\widetilde{a}}} \frac{\widetilde{g}(x) dx_{1} \wedge dx_{2}}{\widetilde{f}_{1} \widetilde{f}_{2}(x) \cdot x_{1}^{-\sigma}}$$

References

- [1] Arnold V.I., Singularities of Differentiable Maps, vol. I, Boston 1985.
- [2] Griffiths P., Harris J., Principles of Algebraic Geometry, New York 1978.
- [3] Biernat G., Représentation paramétrique d'un résidu multidimensional, Rev. Roum. Math. Pur. Appl. 1991, 36, 5-6, 207-211.
- [4] Biernat G., Théorème des rèsidus dans C², Prace Naukowe Instytutu Matematyki i Informatyki Politechniki Częstochowskiej 2002, 1(1), 19-24.
- [5] Biernat G., On the Jacobi-Kronecker formula for a polynomial mapinng having zeros at infinity, Bull. Soc. Sci. Lettres Łódź 1992, 42 (29), XIV, 139.