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Abstract. This paper deals with numerical solutions of a partial differential equation of 

fractional order. This type of equation describes a process of anomalous diffusion. In this 

equation a space fractional derivative known as the Riesz operator occurs. We propose 

a new approach of discretization of the Riesz operator. Using this approach we present 

a method which utilises this discretization to the solution of equation based on the finite 

difference method. We also present fundamental solutions of this equation in one-dimen-

sional space which are so-called the class of Lévy stable densities of index α. In the final 

part of this paper some numerical examples are shown. 

Introduction 

The process of diffusion is a transport process of matter from one part of 

a system to another. This results from random molecular motions. Such transport 

can be characterised by the mean-square displacement of particle positions 

< x
2
(t) >. In the classical diffusion a mean-square displacement grows linearly with 

time < x
2
(t) > = 2K2t, where K2 is a coefficient of diffusion m

2
/s. For modelling of 

such description the Fick’s law is used. Examples of the classical diffusion are 

Brownian motion of particles and heat transfer. Transfer in the complex and non-

homogenous background is related to some deviations from the standard Fick’s 

law and it is so-called anomalous diffusion [1-4]. It is characterised by the occur-

rence of a mean-square displacement of the form < x
2
(t) > ∼ t

α

, for 0 < α < 2, or the 

second moment does not exist < x
2
(t) > → ∞. This second case is characterized  

by rare but extremely large jumps of diffusion particle - so-called the Lévy motion 

or Lévy flights [1, 4, 5]. 

The fundamental solution for the Cauchy problem of the classical linear diffu-

sion equation can be interpreted as Gaussian spatial probability density function 

evolving in time. In the last years have grown number of papers which provide 

mathematical models based on equations with fractional derivatives [6-8] for de-

scribing phenomena of anomalous diffusion [4, 9, 10]. In this work we will con-

sider an equation of anomalous diffusion with space fractional derivative which 

generate a class of (non-Gaussian) symmetric Lévy stable densities of index α.  

In [5, 11] the reader can find more details on Lévy stable densities. 
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1. Mathematical model 

In this paper we consider a partial differential equation of fractional order 

(known as anomalous diffusion equation [9, 12, 13]) in which, in comparison to 

the classical diffusion equation, the second-order space derivative, is replaced by 

the derivative of fractional order α. This equation has the following form  
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where P(x,t) is the probability density function, ∂
α

/∂|x|
α

 P(x,t) is the Riesz fraction-

al operator [8, 12], α is the real order of this operator, Kα is the coefficient of gen-

eralized (anomalous) diffusion with the unit of measure m
α

/s. According to [8, 12] 

the Riesz fractional operator for 0 < α ≤ 2, α ≠ 1, and for the one-variable function 

u(x) is defined as 
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where ( )xuD
x

α

∞−
 and ( )xuD

x

α

∞
 are fractional derivatives in the Riemann-Liouville 

sense and Hu(x) is the Hilbert transform defined as: 
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Occurring in (3) and (4) fractional operators of order α: ( )xuI
x

α

∞−
 and ( )xuI

x

α

∞
 are  

the left- and right-side of Weyl fractional integrals [7, 8] which definitions are: 
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Assuming α = 2 in equation (1) we obtain classical diffusion, i.e. so-called the 

heat transfer equation, but for α = 1: d/d|x| u(x) ≠ d/dx u(x). For analytic solution of 

equation (1) we can apply Fox’s H-function [4], but we numerically solve this 

equation when additional non-linear term may occur. We know solutions in the 

simple form only for α = 2 and α = 1 as Gaussian P2(x,t) and Cauchy P1(x,t) pdf’s 
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Some numerical methods used in solution of fractional differential equations 

can be found in [12]. However they are applied to the infinity domain. In this work 

we propose a discretization scheme for the Riesz derivative and we consider equa-

tion (1) in one-dimensional domain Ω: −L ≤ x ≤ L (we omit the case when α = 1) 

with absorbing boundaries (Dirichlet conditions)  

 ( ) ( ) 0,,   txP  txP
LxLx
==
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and with the initial condition 

 ( ) ( )xctxP
t 00

, =
=

 (10) 

2. Numerical method 

According to the finite difference method [14, 15] we consider a discrete from 

of equation (1) both in time and space. In the previous work [16] we solved numer-

ically the fractional partial differential equation similar to (1) where only the  

time-fractional derivative has been taken into account. We called this method 

FFDM (the Fractional FDM). Extending our considerations we can say that solu-

tion of equation (1) needs proper approximation of the Riesz derivative (2) in some 

numerical schemes. 

Here we introduce another definition of the fractional derivative in the Caputo 

form [7, 9] as: 
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where m ∈ N, m − 1 < α ≤ m, and u
(m)

 are first and second derivatives, for m = 1, 2. 

Above definitions base on assumption in [13] that expressions (3), (4) and (11) are 

the same when the lower/upper limit of integration tends to minus/plus infinity. 

Thus we have 
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2.1. Approximation of the Riesz derivative 

We start numerical analysis from discretization of operators (11) related to de-

finition (2). Therefore we introduce a homogenous spatial grid −∞ < … < xi−2 < xi−1 

< xi < xi+1 < xi+2 < … < ∞ with the step h = xi − xi-1. We denote a value of function 

u(x) in the point xi as ui = u(xi), for i ∈ Z. According to changes in the parameter α 

in (2) we distinguish two cases of discrete approximation of the Riesz derivative. 

The first case includes changes in the parameter α for the range 0 < α < 1. We 

rewrite operator (2) using the Caputo definition as 
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where 
'

~

ju  and 
'~~
ju are difference schemes which approximate the first derivative of 

integer order on the intervals [xj−1, xj] and [xj, xj+1] respectively. We propose the 

following weighed forms of these difference schemes as 
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We introduce these formulae because we want to obtain various transitions from 

one to another difference scheme which are connected with the first derivative of 

integer order. For example, putting α = 1 into (14) and (15) we obtain wide known 

the central-difference approximation of first derivative and putting value α = 0 we 

get the backward- (14) or forward- (15) difference schemes respectively. In this 

way we would like to avoid a problem of singularity in the operator (2) for α → 1. 

Denoting by 
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we have 
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Finally we can write the discrete form of (2) for 0 < α < 1, as 
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where coefficients ( )α
k
w  have the following form 
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The second case involves changes in the parameter α for the range 1 < α ≤ 2. 

Similar to previous calculations we write operator (2) using the Caputo form as 
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where 
''

~

ju  and 
''~~
ju  are difference schemes for the second derivative of integer order 

which we approximate by the following formulae 
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We can observe that putting α = 2 into (21) and (22) we determine the classical 

central-difference scheme and for α = 1 we obtain the backward/forward four-

point discretizations of the second derivative of integer order. 

Denoting by 
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we have 
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Finally we can write the discrete form of expression (2) 1 < α ≤ 2, as 
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where coefficients ( )α
k

w  here are 
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Summarising above calculations we presented difference schemes for the Riesz 

fractional derivative. It should be noted that expressions (18) and (25) are repre-

sented by the weighted sum over discrete values of function u in all node's points. 

If the index k tends to 0, i.e. in nearest neighbourhood of an arbitrary point xi, one 

may observe higher values of ( )α
k

w . Whereas values ( )α
k

w  decrease to zero for next 

nodes far away from the point xi. 

2.2. Fractional Finite Difference Method 

While discretization of the Riesz derivative in space was proposed, in this sub-

section we describe the finite difference method for equation (1). In comparison to 

the classical diffusion equation where discretization of the second derivative over 

space is approximated by the central difference scheme, here we use generalized 

schemes given by formulae (18) and (25) respectively. 

We introduce a temporal grid 0 = t
 0
 < t

 1
 < … < t

 f
 < t

 f+1 
 < … < ∞ with the grid 

step ∆t = t
 f+1

− t
 f
 . In a point xk at the moment of time t

 f
 we denote the function 

P(x,t) as Pk
f
 = P(xi,t

 f
), for k ∈ Z and f ∈ N. 

In the explicit scheme of FDM we replaced (1) by the following formula 
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and after simplifications we obtained the final form as 
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where coefficients ( )α
k
s  are following 
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In order to determine stability of the explicit scheme (28) the coefficient ( )α
0
s  

defined by (29) must be positive 



Using Fractional Calculus for Generation of α-stable Lévy Probability Density Functions 31

 ( ) ( )
01

00
>

∆
+=

α

αα

α

w
h

t
Ks   (30) 

Thus we fixed maximum length of the time step ∆t as  
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Moreover, the initial condition (10) is introduced directly to every grid nodes  

at the first time step t = t
 0
. This determines initial values of the function P as 
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This scheme is not easy for application in unbounded domains because it gene-

rates infinite number of difference equations. Numerical solution (28) with inclu-

ded the unbounded domain −∞ < x < ∞ has no practical implementations in com-

puter simulations. We bounded this domain and at present we solve this problem 

on the finite domain Ω: −L ≤ x ≤ L with absorbing boundaries (9). We choose such 

fixed value L in order to get enough large domain, in which absorbing boundaries 

haven’t significant influence on solutions. However, this approach introduces cer-

tain error.  We divide the domain Ω into N sub-domains with the step h = 2L/N. 

Here we have the following modified spatial grid −L = x0 < x1 < … < xi−1< 

< xi<   xi+1< … < xN = L. In comparison to the previous method we assume, in 

points of the grid placed outside lower and upper limits of the domain Ω and on 

the boundary nodes x0 and xN, that the function P has values 0. Hence, on this 

background we can modify expression (28) using reduction of sum terms 
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In opposite to the classical second derivative which is approximated locally,  

the Riesz and other fractional derivatives accumulate all values of the function in 

domain points. Boundary conditions have a direct influence to the numerical solu-

tion not only on boundary nodes but also in internal nodes of the domain. Here we 

use truncation of the function P outside the domain Ω. 
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3. Simulation results 

In this section we present results of calculation obtained by our numerical  

approach. We try to simulate evolutions of the probability density function over 

time for α ∈ {0.1, 0.5, 0.99, 1.5, 2} and for Kα = 1. We assumed the domain [−25, 

25] which we divided into 5000 subintervals (h = 0.01). We assumed the absorbing 

boundary conditions. The initial condition Pα(x,0
+
) = δ(x) is approximated by  

0

2500
P  = 1/h and Pi

0
 = 0, for i ≠ 2500. Figure 1 shows plots of the probability densi-

ty function Pα(x,t) over space after t = 1 s in the visible interval [−10, 10] (in the  

logarithmic scale). 

It should be noted that for α = 2 our solution estimates roughly the Gaussian 

probability density function and for α = 1
±
 this solution becomes the Cauchy pro-

bability density function defined by formulae (8).  

 

 

Fig.1. Probability density functions over space for different values of the parameter α  

and for t = 1 s 

Conclusions 

In summary we proposed the fractional finite difference method for fractional 

diffusion equations in which the Riesz fractional derivative is included. We ana-

lysed the anomalous diffusion equation in linear form in order to compare our 

numerical results with the analytical solution. We obtained FDM scheme which 

may generalise classical schemes of FDM. Moreover, for α = 2 our solution is  

the same as the classical finite difference method. We hope that this numerical  

approach will be successfully applied to fractional partial differential equations 

having more complex forms, i.e. non-linear forms. 
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Analysing plots included in this work, we observe that for the case α < 2 (the 

Lévy motion) diffusion is slower than classical diffusion (Brownian motion) at the 

initial time steps. Nevertheless the probability density function generates a long 

tail of distribution in the long time limit. This can be associated with rare and  

extreme events which are characterized by arbitrary very large values of particle 

jumps. Proposed numerical solution creates a bridge between Gaussian and  

Cauchy processes. 
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