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Abstract. This paper presents exact formulas to find the number of Manhattan distances in 

square and triangular lattices (with the step δ = 1) as a function of number of nodes, L.  

In the limit of L ∞→  and δ→0, we provide probability density functions for distances in 

unit squares and triangles. These formulas are useful in the fields of statistical physics and 

computer science. 

The geometrical properties of networks have attracted much attention due to 

progress in the fields of computer science, mathematical biology and statistical 

physics. In papers recently published in Journal of Physics A: Math. Gen. the  

authors examined different problems such as the optimal shape of a city [1], pro-

perties of polymers on directed lattices [2] or quantum localization problems in  

the context of a network model of disordered superconductors embedded on the 

Manhattan lattice [3]. Much attention has been dedicated to the statistics of  

random walk path and end-to-end distance distributions on regular networks [4-6]. 

The common question of the above mentioned problems is how many pairs  

of points separated by a given number (q) of steps can be found in a bounded  

region of a regular lattice. Such number q is referred to as the so-called Manhattan 

distance. For a square lattice the Manhattan distance is defined as the sum of the 

horizontal and the vertical distance (see Figure 1). Similarly, for the triangular 

lattice we can define the Manhattan distance as the sum of the distances along 

directions parallel to the edges of the triangle. This paper focuses on geometry but 

the knowledge of the number of Manhattan distances in a particular lattice can be 

useful for studying many quantities of physical importance. 

First, we consider the square lattice. From Figure 1 it is easy to see that the 

number of two-point segments A-A separated by a given length q measured in 

steps δ, is equal to 

 ∑
−=

=

−+−×

1

0

))((2

qj

j

jNjqN  (1) 

Multiplication by 2 in above equation comes from segments obtained by a 90° counter- 

clockwise rotation of the A-A segments. The number of B-B segments is equal to 
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where an auxiliary quantity p = 0,1, … , N – 2 measures the distance between the 

right end of the B-B segment and the top-right corner of the square. After adding 

Equations (1) and (2), we obtain the following expression for the number of dis-

tances q on the square 

 








−+=

−=

+−−−−

+−+−
=∆

22,1,for,

1,2,1for,

)12)(2)(12(
3
1

)1()1(
3
1)(2

)(
NNNq

Nq

qNqNqN

qqqqqNN

q
s

K

K

 (3) 

B 

B 

A 

A 

 

Fig. 1.  A-A, B-B are pairs of points in a square lattice with N = 11. The Manhattan distances: 

1 ≤ q(A,A) < N and N ≤ q(B < B) < 2N – 2 

Note, that with the help of the normalization condition 
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Equation (3) can be written in the form of a probability distribution function for 

the discrete sets of distances Nqx
q
=  in the unit square grid with the step 

.1 N=δ  In the limit of ∞→N  we get a continuous limit with the following 

density function 
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Similarly, we derive )(q∆  and )(x∆  for the triangular lattice: 
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Subscripts s and t stand for square and triangular lattices, respectively. 

From Equations (5) and (7) it is easy to calculate moments ∫ℜ dxxDx
k

)(  of the 

corresponding densities )(xD
s

 and ).(xD
t

 They are given by the following equa-

tions: 
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Thus, in the case of the square, the moments diverge, ∞→
)(k

s
m  with ,∞→k  and 

they asymptotically decay for the triangle .
)(

∞→
k

t
m  The mean distance and the 

variance 
21)2(2 )(mm −=σ  are equal to: 
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In the different way, the same distance value 32
)1(
=

s
m  for the square lattice, was 

obtained in [1]. 

It is interesting to note that Equations (5) and (7) give the distribution of dis-

tances between two consecutive steps of a random walker allowed to jump to any 

point within the unit square or unit triangle, whereas the distribution of distances 

between this walker and a given fixed corner of his walking area is equal to  

20,11)( ≤≤−−= xxxd
s

and 10,)( ≤≤= xxxd
t

 for the square and the triangular 

lattices, respectively. 

In conclusion, we have derived the probability density functions for the Man-

hattan distance within the square and triangular geometries. We have also calculat-

ed the moments of these distributions and found that for the triangular lattice the 

moments asymptotically vanish whereas for the square lattice they diverge. 
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The probability density functions obtained for square and triangular geometries 

give the probability weight of class q containing pairs of points with given distance 

q. Thus, they may contain valuable information related to the directed walk  

models, such as Dyck or Motzkin paths [7]. 

References 

[1] Bender C.M. et al., J. Phys. A: Math. Gen. 2004, 37, 147-159. 

[2] Janse van Rensburg E.J., J. Phys. A: Math. Gen. 2003, 36, R11-R61. 

[3] Bearnond E.J., Owczarek A.L., Cardy J., J. Phys. A: Math. Gen. 2003, 36, 10251-10267. 

[4] Everaers R., New Journal of Physics 1999, 1, 12.1-12.54. 

[5] Jensen J., J. Phys. A: Math. Gen. 2004, 37, 5503-5524. 

[6] Kniežević M., Kniežević D., Spasojević D., J. Phys. A: Math. Gen. 2004, 37, 1-8. 

[7] Orlandini E., Whittington S.G., J. Phys. A: Math. Gen. 2004, 37, 5305-5314. 

 


