# IDENTIFICATION OF BOUNDARY TEMPERATURE USING THE ENERGY MINIMIZATION METHOD COUPLED WITH THE $2^{\text {ND }}$ SCHEME OF BEM 

Marek Jasiński<br>Silesian University of Technology, Gliwice


#### Abstract

The inverse problem consisting in identification of temperature on the part of boundary limiting the domain considered is discussed. In order to solve the problem the energy minimization method coupled with the $2^{\text {nd }}$ scheme of boundary element method is used. The possible disturbances of 'measured' temperatures have been taken into account. The theoretical considerations are supplemented by the examples of computations verifying the correctness of the algorithm proposed.


## 1. Formulation of the problem

The 2D problem analyzed in this paper could be written in following form [1,2]

$$
\begin{cases}x \in \Omega: & c \frac{\partial T}{\partial t}=\lambda\left(\frac{\partial^{2} T}{\partial x_{1}^{2}}+\frac{\partial^{2} T}{\partial x_{2}^{2}}\right)  \tag{1}\\ x \in \Gamma_{1}: & T(x)=? \\ x \in \Gamma_{2}: & T(x)=T_{b} \\ x \in \Gamma_{3}: & q(x)=-\lambda \frac{\partial T}{\partial n}=q_{b} \\ x \in \Gamma_{4}: & q(x)=-\lambda \frac{\partial T}{\partial n}=\alpha\left[T(x)-T^{\infty}\right] \\ \xi^{i} \in \Omega: & T_{d}\left(\xi^{i}\right)-\text { known, } i=1 \ldots M\end{cases}
$$

where $\lambda[\mathrm{W} /(\mathrm{mK})]$ is thermal conductivity, $c\left[\mathrm{~J} /\left(\mathrm{m}^{3} \mathrm{~K}\right)\right]$ is the specific heat per unit of volume, $\alpha$ is the heat transfer coefficient $\left[\mathrm{W} /\left(\mathrm{m}^{2} \mathrm{~K}\right)\right], T$ denotes temperature, $T_{b}$, $q_{b}$ are the given boundary temperature and heat flux, $T^{\infty}$ is the ambient temperature, $T_{d}\left(\xi^{i}\right)$ are the known temperatures at the internal points $\xi^{i}$ in the domain considered.
The aim of investigations is to determine the boundary temperature on $\Gamma_{1}$.

## 2. Method of solution

In numerical realization, the boundary $\Gamma$ is divided into $N$ constant boundary elements $\Gamma_{j}[3,4]$. Additionally, we assume that $N_{1}$ nodes belong to the boundary $\Gamma_{1}$, the nodes $N_{1}+1, \ldots, N_{2}$ belong to $\Gamma_{2}, N_{2}+1, \ldots, N_{3}$ belong to $\Gamma_{3}$ and $N_{3}+1, \ldots, N$ belong to $\Gamma_{4}$ (Fig. 1).


Fig. 1. Discretization and position of internal points

The boundary integral equation for problem (1) using $2^{\text {nd }}$ scheme of BEM is of the form [3]:

$$
\begin{align*}
& B(\xi) T\left(\xi, t^{f}\right)+\int_{\Gamma} q\left(x, t^{f}\right) g(\xi, x) \mathrm{d} \Gamma=\int_{\Gamma} T\left(x, t^{f}\right) h(\xi, x) \mathrm{d} \Gamma+ \\
& \quad+\sum_{s=1}^{f-1}\left[\int_{\Gamma} T\left(x, t^{s}\right) h^{s}(\xi, x) \mathrm{d} \Gamma-\int_{\Gamma} q\left(x, t^{s}\right) g^{s}(\xi, x) \mathrm{d} \Gamma\right] \tag{2}
\end{align*}
$$

The integrals in equation (2) are substituted by sum of integrals and then for constant boundary elements, taking into account the boundary conditions one obtains

$$
\begin{gather*}
\sum_{j=1}^{N_{1}} G_{i j} q_{j}^{f}+\sum_{j=N_{1}+1}^{N_{2}} G_{i j} q_{j}^{f}+\sum_{j=N_{2}+1}^{N_{3}} G_{i j} q_{b}+\sum_{j=N_{3}+1}^{N} G_{i j} \alpha\left(T_{j}^{f}-T^{\infty}\right)= \\
=\sum_{j=1}^{N_{1}} H_{i j} T_{j}^{f}+\sum_{j=N_{1}+1}^{N_{2}} H_{i j} T_{b}+\sum_{j=N_{2}+1}^{N_{3}} H_{i j} T_{j}^{f}+\sum_{j=N_{3}+1}^{N} H_{i j} T_{j}^{f}+  \tag{3}\\
+\sum_{s=1}^{f-1}\left(\sum_{j=1}^{N} H_{i j}^{s} T_{j}^{s}-\sum_{j=1}^{N} G_{i j}^{s} q_{j}^{s}\right)
\end{gather*}
$$

where:

$$
\xi^{i} \in \Gamma: \quad G_{i j}=\int_{\Gamma_{j}} T^{*}\left(\xi^{i}, x, t^{f}, t\right) \mathrm{d} \Gamma_{j}, \quad H_{i j}= \begin{cases}\int_{\Gamma_{j}} q^{*}\left(\xi^{i}, x, t^{f}, t\right) \mathrm{d} \Gamma_{j}, & i \neq j  \tag{4}\\ -0.5, & i=j\end{cases}
$$

while

$$
\xi^{i} \in \Gamma: \quad G_{i j}^{s}=\int_{\Gamma_{j}} T^{*}\left(\xi^{i}, x, t^{s}, t\right) \mathrm{d} \Gamma_{j}, \quad H_{i j}^{s}= \begin{cases}\int_{\Gamma_{j}} q^{*}\left(\xi^{i}, x, t^{s}, t\right) \mathrm{d} \Gamma_{j}, & i \neq j  \tag{5}\\ -0.5, & i=j\end{cases}
$$

In (4) and (5) $T^{*}$ and $q^{*}$ are fundamental solution and heat flux resulting from fundamental solution, respectively, $B(\xi) \in(0,1)[3,4]$.
The well ordered system of equations has the form

$$
\begin{equation*}
\mathbf{A}_{1} \mathbf{Y}^{f}=\mathbf{A}_{2} \mathbf{P}+\mathbf{M}^{f} \tag{6}
\end{equation*}
$$

where:

$$
\begin{align*}
& \mathbf{A}_{1}=\left[\begin{array}{lllllllll}
G_{11} & \ldots & G_{1 N_{2}} & -H_{1 N_{2}+1} & \ldots & -H_{1 N_{3}} & \left(\alpha G_{1 N_{3}+1}-H_{1 N_{3}+1}\right) & \ldots & \left(\alpha G_{1 N}-H_{1 N}\right) \\
& \ldots & & & \ldots & & & \ldots & \\
G_{N 1} & \ldots & G_{N N_{2}} & -H_{N N_{2}+1} & \ldots & -H_{N N_{3}} & \left(\alpha G_{N N_{3}+1}-H_{N N_{3}+1}\right) & \ldots & \left(\alpha G_{N N}-H_{N N}\right)
\end{array}\right]  \tag{7}\\
& \mathbf{Y}^{f}=\left[\begin{array}{llllllllllll}
q_{1}^{f} & \ldots & q_{N_{1}}^{f} & q_{N_{1}+1}^{f} & \ldots & q_{N_{2}}^{f} & T_{N_{2}+1}^{f} & \ldots & T_{N_{3}}^{f} & T_{N_{3}+1}^{f} & \ldots & T_{N}^{f}
\end{array}\right]^{\mathrm{T}}  \tag{8}\\
& \mathbf{A}_{2}=\left[\begin{array}{lllllllll}
H_{11} & \ldots & H_{1 N_{2}} & -G_{1 N_{2}+1} & \ldots & -G_{1 N_{3}} & \alpha G_{1 N_{3}+1} & \ldots & \alpha G_{1 N} \\
& \ldots & & & \ldots & & & \ldots & \\
H_{N 1} & \ldots & H_{N N_{2}} & -G_{N N_{2}+1} & \ldots & -G_{N N_{3}} & \alpha G_{N N_{3}+1} & \ldots & \alpha G_{N N}
\end{array}\right]  \tag{9}\\
& \mathbf{P}=\left[\begin{array}{llllllllllll}
T_{1} & \ldots & T_{N_{1}} & T_{b} & \ldots & T_{b} & q_{b} & \ldots & q_{b} & T^{\infty} & \ldots & T^{\infty}
\end{array}\right]^{\mathrm{T}}  \tag{10}\\
& \mathbf{M}^{f}=\sum_{s=1}^{f-1} M_{i}^{s}=\sum_{s=1}^{f-1}\left(\sum_{j=1}^{N} H_{i j}^{s} T_{j}^{s}-\sum_{j=1}^{N} G_{i j}^{s} q_{j}^{s}\right) \tag{11}
\end{align*}
$$

The temperatures at internal nodes $\xi^{i}$ are calculated using the formula [3, 4]

$$
\begin{gather*}
T^{f}\left(\xi^{i}\right)=\sum_{j=1}^{N_{1}} H_{i j}^{w} T_{j}^{f}+\sum_{j=N_{1}+1}^{N_{2}} H_{i j}^{w} P_{j}+\sum_{j=N_{2}+1}^{N_{3}} H_{i j}^{w} T_{j}^{f}+\sum_{j=N_{3}+1}^{N} H_{i j}^{w} T_{j}^{f}- \\
-\sum_{j=1}^{N_{1}} G_{i j}^{w} q_{j}^{f}-\sum_{j=N_{1}+1}^{N_{2}} G_{i j}^{w} q_{j}^{f}-\sum_{j=N_{2}+1}^{N_{3}} G_{i j}^{w} P_{j}-\sum_{j=N_{3}+1}^{N} G_{i j}^{w w} \alpha\left(T_{j}^{f}-P_{j}\right)+  \tag{12}\\
+\sum_{s=1}^{f-1}\left(\sum_{j=1}^{N} H_{i j}^{w s} T_{j}^{s}-\sum_{j=1}^{N} G_{i j}^{w s} q_{j}^{s}\right)
\end{gather*}
$$

Equation (6) can be written in the form

$$
\begin{equation*}
\mathbf{Y}^{f}=\mathbf{A}_{1}^{-1} \mathbf{A}_{2} \mathbf{P}+\mathbf{A}_{1}^{-1} \mathbf{M}^{f} \tag{13}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathbf{Y}^{f}=\mathbf{U P}+\mathbf{B} \mathbf{M}^{f} \tag{14}
\end{equation*}
$$

From the system of equation (14) results that

$$
\begin{gather*}
q_{j}^{f}=\sum_{k=1}^{N_{1}} U_{j k} T_{k}+\sum_{k=N_{1}+1}^{N} U_{j k} P_{k}+\sum_{k=1}^{N} B_{j k} M_{k}^{f}, \quad j=1 \ldots N_{2}  \tag{15}\\
T_{j}^{f}=\sum_{k=1}^{N_{1}} U_{j k} T_{k}+\sum_{k=N_{1}+1}^{N} U_{j k} P_{k}+\sum_{k=1}^{N} B_{j k} M_{k}^{f}, \quad j=N_{2}+1 \ldots N  \tag{16}\\
q_{j}^{f}=\alpha\left(T_{j}^{f}-T^{\infty}\right)=\alpha\left(T_{j}^{f}-P_{j}\right), \quad j=N_{3}+1 \ldots N \tag{17}
\end{gather*}
$$

Putting (15), (16) and (17) into (12) one has [1, 2]

$$
\begin{align*}
& T^{f}\left(\xi^{i}\right)=\sum_{j=1}^{N_{1}}\left[H_{i j}^{w}-\sum_{k=1}^{N_{2}} G_{i k}^{w} U_{k j}+\sum_{k=N_{2}+1}^{N_{3}} H_{i k}^{w} U_{k j}+\sum_{k=N_{3}+1}^{N}\left(H_{i k}^{w}-\alpha G_{i k}^{w}\right) U_{k j}\right] T_{j}+ \\
& +\sum_{j=N_{1}+1}^{N}\left[-\sum_{k=1}^{N_{2}} G_{i k}^{w} U_{k j}+\sum_{k=N_{2}+1}^{N_{3}} H_{i k}^{w} U_{k j}+\sum_{k=N_{3}+1}^{N}\left(H_{i k}^{w}-\alpha G_{i k}^{w}\right) U_{k j}\right] P_{j}+ \\
& +\sum_{j=N_{1}+1}^{N_{2}} H_{i j}^{w} P_{j}-\sum_{j=N_{2}+1}^{N_{3}} G_{i j}^{w} P_{j}+\sum_{j=N_{3}+1}^{N} \alpha G_{i j}^{w} P_{j}+  \tag{18}\\
& +\sum_{j=1}^{N}\left[-\sum_{k=1}^{N_{2}} G_{i k}^{w} B_{k j}+\sum_{k=N_{2}+1}^{N_{3}} H_{i k}^{w} B_{k j}+\sum_{k=N_{3}+1}^{N}\left(H_{i k}^{w}-\alpha G_{i k}^{w}\right) B_{k j}\right] M_{j}^{f}+ \\
& +\sum_{s=1}^{f-1}\left(\sum_{j=1}^{N} H_{i j}^{w s} T_{j}^{s}-\sum_{j=1}^{N} G_{i j}^{w s} q_{j}^{s}\right)
\end{align*}
$$

We introduce following denotations:

$$
\begin{gather*}
D_{i j}=-\sum_{k=1}^{N_{2}} G_{i k}^{w} U_{k j}+\sum_{k=N_{2}+1}^{N_{3}} H_{i k}^{w} U_{k j}+\sum_{k=N_{3}+1}^{N}\left(H_{i k}^{w}-\alpha G_{i k}^{w}\right) U_{k j}  \tag{19}\\
W_{i j}=H_{i j}^{w}+D_{i j}  \tag{20}\\
E_{i}=\sum_{j=N_{1}+1}^{N_{2}} H_{i j}^{w} P_{j}-\sum_{j=N_{2}+1}^{N_{3}} G_{i j}^{w} P_{j}+\sum_{j=N_{3}+1}^{N} \alpha G_{i j}^{w} P_{j}  \tag{21}\\
R_{i j}=-\sum_{k=1}^{N_{2}} G_{i k}^{w} B_{k j}+\sum_{k=N_{2}+1}^{N_{3}} H_{i k}^{w} B_{k j}+\sum_{k=N_{3}+1}^{N}\left(H_{i k}^{w}-\alpha G_{i k}^{w}\right) B_{k j}  \tag{22}\\
V_{i}=\sum_{s=1}^{f-1}\left(\sum_{j=1}^{N} H_{i j}^{w s} T_{j}^{s}-\sum_{j=1}^{N} G_{i j}^{w s} q_{j}^{s}\right)  \tag{23}\\
Z_{i}=\sum_{j=N_{1}+1}^{N} D_{i j} P_{j}+\sum_{j=1}^{N} R_{i j} M_{j}^{f}+E_{i}+V_{i} \tag{24}
\end{gather*}
$$

and then the equation (18) can be written in the form [1]

$$
\begin{equation*}
T^{f}\left(\xi^{i}\right)=\sum_{j=1}^{N_{1}} W_{i j} T_{j}^{f}+Z_{i} \tag{25}
\end{equation*}
$$

In order to solve the problem considered, the energy minimization method is applied which resolves itself into seek of minimum of functional [3,5]

$$
\begin{equation*}
J=-\frac{1}{2 \lambda} \int_{\Gamma} T q \mathrm{~d} \Gamma \tag{26}
\end{equation*}
$$

with the following restrictions

$$
\begin{equation*}
\left|T^{f}\left(\xi^{i}\right)-T_{d}\left(\xi^{i}\right)\right| \leq \varepsilon \tag{27}
\end{equation*}
$$

Because $T^{f}\left(\xi^{i}\right)$ in equation (27) is expressed by (25) then restrictions take a form

$$
\begin{equation*}
\left|\sum_{j=1}^{N_{1}} W_{i j} T_{j}^{f}-F\left(\xi^{i}\right)\right| \leq \varepsilon \tag{28}
\end{equation*}
$$

where

$$
\begin{equation*}
F\left(\xi^{i}\right)=T_{d}\left(\xi^{i}\right)-Z_{i} \tag{29}
\end{equation*}
$$

After the discretization, the functional (26) can be expressed as follows

$$
\begin{equation*}
J\left(T_{1}, T_{2}, \ldots, T_{N_{1}}\right)=-\frac{1}{2 \lambda} \sum_{j=1}^{N} \int_{\Gamma_{j}} \mathbf{T}^{\mathrm{T}} \mathbf{q} \mathrm{~d} \Gamma_{j} \tag{30}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathbf{T}^{\mathrm{T}} \mathbf{q}=\left[\begin{array}{llllllllllll}
T_{1} & \ldots & T_{N_{1}} & T_{b} & \ldots & T_{b} & T_{N_{2}+1} & \ldots & T_{N_{3}} & T_{N_{3}+1} & \ldots & T_{N}
\end{array}\right]^{\mathrm{T}} . \\
& \cdot\left[\begin{array}{llllllllllll}
q_{1} & \ldots & q_{N_{1}} & q_{N_{1}+1} & \ldots & q_{N_{2}} & q_{b} & \ldots & q_{b} & q_{a} & \ldots & q_{a}
\end{array}\right]= \\
& =\left[\begin{array}{lllllllllll}
T_{1} & \ldots & T_{N_{1}} & T_{b} & \ldots & T_{b} & q_{b} & \ldots & q_{b} & q_{a} & \ldots \\
q_{a}
\end{array}\right] .  \tag{31}\\
& \cdot\left[\begin{array}{lllllllllll}
q_{1} & \ldots & q_{N_{1}} & q_{N_{1}+1} & \ldots & q_{N_{2}} & T_{N_{2}+1} & \ldots & T_{N_{3}} & T_{N_{3}+1} & \ldots \\
T_{N}
\end{array}\right]^{\mathrm{T}}= \\
& =\mathbf{S}^{\mathrm{T}} \mathbf{Y}^{f}=\mathbf{S}^{\mathrm{T}}\left(\begin{array}{llll}
\left.\mathbf{U P}+\mathbf{B} \mathbf{M}^{f}\right)
\end{array}\right.
\end{align*}
$$

while $q_{a}$ is known boundary heat flux on $\Gamma_{4}$.
Finally, the energy minimization method requires the solution of following problem

$$
\left\{\begin{array}{c}
\min J\left(T_{1}, T_{2}, \ldots, T_{N_{1}}\right)=\min \left[-\mathbf{S}^{\mathrm{T}}\left(\mathbf{U P}+\mathbf{B M}^{f}\right)\right]  \tag{32}\\
\left|\sum_{j=1}^{N_{1}} W_{i j} T_{j}-F\left(\xi^{i}\right)\right| \leq \varepsilon, i=1,2, \ldots, M
\end{array}\right.
$$

## 3. Examples of computations

The square of dimension $0.1 \times 0.1 \mathrm{~m}$ has been considered. The thermal conductivity $\lambda=1 \mathrm{~W} / \mathrm{mK}$, specific heat per unit of volume $c=1 \mathrm{~J} /\left(\mathrm{m}^{3} \mathrm{~K}\right)$.

The boundary has been divided into 40 constant boundary elements. In order to solve the inverse problem, it is assumed that the values of temperature are known at 12 selected points from interior of the domain (Fig. 1). These values have been obtained from direct problem (1) solution under the assumption that the temperature on the bottom surface equals $50^{\circ} \mathrm{C}$.
In computations two different values of parameters $\varepsilon$ have been assumed ( 0.1 and $0.5)$. Time step: $\Delta t=0.5 \mathrm{~s}$.

Table 1
Variants of boundary conditions

|  | Variant 1 | Variant 2 |
| :---: | :---: | :---: |
| Left side | $T_{b}=50^{\circ} \mathrm{C}$ | $q_{b}=0$ |
| Top side | $T_{b}=100^{\circ} \mathrm{C}$ | $q_{b}=0$ |
| Right side | $T_{b}=100^{\circ} \mathrm{C}$ | $T_{b}=100^{\circ} \mathrm{C}$ |

Table 2
Solution of inverse problem (Variant 1, $\varepsilon=0.1$ )

| Node | 0.5 s | 10 s | 20 s | 30 s | 40 s | 50 s |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 49.968 | 49.992 | 49.985 | 49.980 | 49.976 | 49.974 |
| 2 | 49.963 | 49.982 | 49.977 | 49.973 | 49.971 | 49.968 |
| 3 | 49.749 | 49.756 | 49.755 | 49.754 | 49.753 | 49.752 |
| 4 | 49.596 | 49.591 | 49.592 | 49.594 | 49.595 | 49.596 |
| 5 | 50.211 | 50.202 | 50.204 | 50.205 | 50.206 | 50.207 |
| 6 | 51.853 | 51.852 | 51.851 | 51.851 | 51.851 | 51.850 |
| 7 | 51.710 | 51.718 | 51.717 | 51.716 | 51.715 | 51.714 |
| 8 | 45.556 | 45.558 | 45.559 | 45.559 | 45.559 | 45.560 |
| 9 | 43.669 | 43.658 | 43.659 | 43.660 | 43.660 | 43.661 |
| 10 | 73.412 | 73.416 | 73.413 | 73.411 | 73.409 | 73.408 |
| mean | 51.56868 | 51.5724 | 51.57109 | 51.5702 | 51.56952 | 51.56898 |

Table 3
Solution of inverse problem (Variant $1, \varepsilon=0.5$ )

| Node | 0.5 s | 10 s | 20 s | 30 s | 40 s | 50 s |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 50.381 | 50.409 | 50.401 | 50.395 | 50.390 | 50.386 |
| 2 | 51.182 | 51.215 | 51.205 | 51.198 | 51.193 | 51.189 |
| 3 | 51.574 | 51.603 | 51.595 | 51.589 | 51.584 | 51.580 |
| 4 | 51.324 | 51.344 | 51.338 | 51.334 | 51.331 | 51.329 |
| 5 | 50.169 | 50.175 | 50.173 | 50.172 | 50.172 | 50.171 |
| 6 | 47.911 | 47.904 | 47.907 | 47.908 | 47.909 | 47.910 |
| 7 | 45.009 | 44.996 | 45.000 | 45.003 | 45.005 | 45.007 |
| 8 | 44.474 | 44.464 | 44.466 | 44.468 | 44.469 | 44.470 |
| 9 | 54.138 | 54.137 | 54.136 | 54.135 | 54.135 | 54.134 |
| 10 | 81.376 | 81.390 | 81.385 | 81.382 | 81.379 | 81.377 |
| mean | 52.75389 | 52.7637 | 52.76055 | 52.75839 | 52.75675 | 52.75543 |

Table 4
Solution of inverse problem (Variant 2, $\varepsilon=0.1$ )

| Node | 0.5 s | 10 s | 20 s | 30 s | 40 s | 50 s |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 53.809 | 55.408 | 55.491 | 55.517 | 55.675 | 55.824 |
| 2 | 51.559 | 53.151 | 53.347 | 53.449 | 53.572 | 53.677 |
| 3 | 48.125 | 49.484 | 49.711 | 49.840 | 49.875 | 49.889 |
| 4 | 44.528 | 45.477 | 45.670 | 45.782 | 45.719 | 45.640 |
| 5 | 42.317 | 42.782 | 42.900 | 42.971 | 42.864 | 42.748 |
| 6 | 43.104 | 43.115 | 43.142 | 43.160 | 43.091 | 43.021 |
| 7 | 48.219 | 47.892 | 47.834 | 47.801 | 47.826 | 47.855 |
| 8 | 58.346 | 57.852 | 57.732 | 57.661 | 57.763 | 57.874 |
| 9 | 73.206 | 72.736 | 72.591 | 72.502 | 72.599 | 72.708 |
| 10 | 90.768 | 90.496 | 90.375 | 90.299 | 90.312 | 90.336 |
| mean | 55.39814 | 55.83918 | 55.8794 | 55.8982 | 55.92957 | 55.9572 |

Table 5
Solution of inverse problem (Variant 2, $\varepsilon=0.5$ )

| Node | 0.5 s | 10 s | 20 s | 30 s | 40 s | 50 s |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 41.595 | 43.322 | 43.424 | 43.460 | 43.477 | 43.485 |
| 2 | 42.159 | 43.843 | 44.052 | 44.161 | 44.233 | 44.287 |
| 3 | 43.256 | 44.649 | 44.882 | 45.013 | 45.104 | 45.174 |
| 4 | 45.323 | 46.240 | 46.428 | 46.538 | 46.616 | 46.677 |
| 5 | 48.772 | 49.148 | 49.252 | 49.316 | 49.363 | 49.399 |
| 6 | 54.004 | 53.891 | 53.900 | 53.908 | 53.915 | 53.921 |
| 7 | 61.297 | 60.838 | 60.762 | 60.719 | 60.689 | 60.666 |
| 8 | 70.691 | 70.086 | 69.951 | 69.871 | 69.814 | 69.769 |
| 9 | 81.922 | 81.380 | 81.224 | 81.129 | 81.060 | 81.006 |
| 10 | 93.857 | 93.559 | 93.435 | 93.356 | 93.298 | 93.252 |
| mean | 58.28742 | 58.69547 | 58.73094 | 58.74714 | 58.75694 | 58.76366 |

In Table 1 two variants of boundary conditions are presented, while in the Tables 2-5 the results of computations for different values $\varepsilon$ and variants 1 and 2 are shown.

The paper was sponsored by KBN (Grant No 3 T11F 018 26).

## References

[1] Freus K., Boundary element method in inverse problems of steady - state heat transfer, Ph. D. Thesis, Technical University of Częstochowa, Częstochowa 2002 (In polish).
[2] Majchrzak E., Freus K., Jasiński M., Estimation of boundary temperature using the energy minimization method, Scientific Publication of Opole University of Technology, Mechanics, 78, 2004.
[3] Majchrzak E., Boundary element method in heat transfer, Publ. of Technical University of Częstochowa, Częstochowa 2001 (In polish).
[4] Brebia C.A., Dominguez J., Boundary elements, an introductory course, Computational Mechanics Publications, McGraw-Hill Book Company, London 1992.
[5] Ingham D.B., Improperly posed problems in heat transfer, Chapter 9 in: Boundary elements method in heat transfer, eds. L.C. Wrobel, C.A. Brebia, Computational Mechanics Publications, Southampton, Boston 1997, 269-294.

