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Abstract. In the paper the micro/macro models of crystallization are considered. In literature 

they are called also the second generation ones. The approach considered bases on the nuclea-

tion and nuclei growth laws. The ‘driving force’ of these phenomena is the undercooling below 

the solidification point. In particular, the linear model described among others in [1], the expo-

nential one [2, 3] and its modification [4, 5] are discussed. The aim of research presented is the 

estimation of assumed model influence on the results of numerical simulation of crystallization 

process. The numerical algorithm bases on the finite differences method. In the final part of the 

paper the numerical example is presented. 

1. Mathematical description of the process 

The following energy equation concerning the casting domain is considered [6] 
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where c is a volumetric specific heat, λ is a thermal conductivity, L is a volumetric 

latent heat, fS is a volumetric solid state fraction at the considered point from cast-

ing domain, T, x, t denote the temperature, geometrical co-ordinates and time.  

Equation (1) can be used both in the case of macro models [6, 7] (then the substi-

tute thermal capacity is, as a rule, introduced) and in the case of micro/macro  

models [2-5] (this case is considered in the paper). 

The similar equation determines the temperature field in the mould sub-domain 

namely 
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where cM is a mould volumetric specific heat, λM is a mould thermal conducti- 

vity. 

In the case of typical sand moulds on the contact surface between casting and 

mould the continuity condition in the form 
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can be accepted.  

Additionally on the external surface of the mould we have 
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where α is a heat transfer coefficient, Tα is an ambient temperature. 

The initial condition 
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is also known. 

2. Models of crystallization 

In the group of models here discussed we introduce the following function 

 ),(),(),( txvtxNtx =ω  (6)  

where N is a grains density [grains/m
3 
], v is a single grain volume.  

If we consider the spherical grains and tRu ∂∂=  is a crystallization rate (R is  

a grain radius) then 
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In the case of the others types of crystallization (e.g. dendritic growth) the coefficient 

v < 1 can be introduced [4] and then 
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Finally 
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In the case of so-called linear model the function fs is assumed to be equal ω(x,t) 
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s
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and if fs = 1 then the crystallization process stops.  

The derivative of  fs with respect to time equals 
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One can see that equation (10) determines the geometrical volume (volume frac-

tion) and it is the correct assumption on the first stages of crystallization.  

In order to take into account the geometrical limitations of spherical growth in the 

final stages of the process the equation (11) is also modified to the form [1] 
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The exponential model resulting from the theory proposed by Mehl, Johnson, 

Avrami and Kolmogoroff (e.g. [2, 3]) bases on the following formula 
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in other words the expression of type (6) corresponds to the exponent in equation 

(13). For the small geometrical volumes exp(−ω) = 1 − ω and the formulas (10), (13) 

are the same. 

Additionally considering the group of models discussed it is assumed that: 

1) A local and temporary number of nuclei is proportional to the second power of 

undercooling below the solidification point T
* 

 [ ]2*2 ),(),(),( txTTtxTtxN −=∆= ηη  (14)  

where η is the nucleation coefficient.  

The nucleations stops when ),(),( txTttxT ∆<∆+∆ , for *
),( TtxT >  .0),( =txN  

2) The nuclei growth is determined by the formula 
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where µ is the growth coefficient, m ∈ [1,2] (see [2, 3]). 
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One can find also the other equation, namely 
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where µ1, µ2 are the growth coefficients. 

The interesting modification of Mehl - Johnson - Avrami - Kolmogoroff approach 

can be found in [4, 5]. 

In numerical realization the temporary value of exponent ω results from the follow-

ing considerations [5]. 

At first the time grid is introduced 
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while the casting domain is divided into control volumes Vi, i = 1,2,3,..., n. 

So in order to determine the exponent ω for time t 
f+1

 the successive ‘portions’ of 

solidifying metal should be registered 
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where fL = 1 − fS (a liquid state fraction).  

Taking into account the small increments of f
iVδ  we can used the simple form of 

Taylor formula and then 
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A certain modification of exponent ω definition is presented in [8]. 

The molten metal control volume Vi is considered.  

Let us assume that during the transition from t
0
 to t

1
 the part f

iVδ  of Vi changes the 

phase. 

At time t
1
 the volume of liquid phase equals 
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where 
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In the second time interval the phase change can take place only in the volume 1

i
V  
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Analogously for time t
f+1

 we have 
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or dividing by Vi 
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At the same time 
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The differences between formulas (20) and (26) are visible, but it turned out that 

results of numerical simulations are close. 

3. Example of computation 

As the example the aluminium plate of thickness 2.5 cm made in typical sand 

mould is considered (Fig. 1). 

The following thermophysical parameters have been assumed: 

• volumetric specific heat of casting domain c = 3 MJ/m
3
K, 

• thermal conductivity of casting domain λ = 150 W/mK, 

• volumetric latent heat L = 975 MJ/m
3
, 

• nuclei density  N = 5 ⋅ 10
10

 nuclei/m
3
, 

• growth coefficient µ = 0.000003 m/sK, 

• volumetric specific heat of mould domain cM = 1.6 MJ/m
3
K, 

• thermal conductivity of mould domain λM = 1.5 W/mK. 
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Fig. 1. Casting - mould domain 

On the stage of numerical computations the FDM has been used both in the 

case of the linear model and in the case of exponential one. In Figures 2 and 3 the 

numerical solutions are shown. The numbers 1,2 correspond to the nodes close to 

the contact surface, number 4 corresponds to the casting axis, while number 3 to 

the central point of casting domain. 

The numerical simulations shown that the results obtained using the linear 

model are close to the exponential one. So from numerical point of view it is  

a better to use the linear approach which is mathematically simpler than others 

models. 

 

 

Fig. 2. The results of exponential model application 
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Fig. 3. The results of linear model application 
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