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Abstract. The paper concerns axisymmetric free vibration of annular and circular plates  
of stepped thickness with elastic ring supports. Exact solution to the problem was obtained 
by dividing of considered plate into annular plates of uniform thickness and by using 
Green’s function method. Analytical solution to vibration problem was used to perform 
numerical frequency analysis of an exemplary stepped annular plate. 

Introduction 

The vibrations of annular and circular plates of stepped thickness have been 
studied by several authors (for instance references [1-3]). The solutions to free 
vibration problems concerning such plates were obtained often by using an  
approximate method. In references [1, 2] finite element method and optimized 
Rayleigh-Ritz method were applied. A closed form of exact solution to the  
problem can be obtained by using the Green’s function method. This method in  
the previous papers [3-6] was used, but the problems there considered concern  
the axisymmetric free vibrations of annular or circular uniform plates with elastic 
ring supports. 

The present paper deals with free vibrations of annular and circular plates of 
stepped thickness with elastic ring supports. Exact solution to considered vibration 
problem is obtained by using properties of Green’s functions corresponding to 
differential operators which occur in the mathematical description of the plate 
vibration. The Green’s functions are derived by solving auxiliary problems.  
The next step in this approach consists in dividing of the stepped plate into 
uniform plate elements: annular plates or one circular plate and annular plates.  
In formulation and solution of the problem one takes into account arbitrary finite 
number of the plate elements. Analytical solution to vibration problem was  
used to perform numerical analysis of influence of parameters characterizing  
the system on its eigenfrequencies. In the analysis free vibration of stepped  
annular and circular plates composed of two or more uniform plate elements  
were considered. 
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1. Formulation and solution to the problem 

Consider an annular or circular plate of thickness varying stepwise along  
(n – 1) concentric circles as schematic shown in Figure 1. These circles mark out n 
plate elements - uniform annular plates of thickness hj and radii aj-1, aj, where  
aj-1 < aj (j = 1,…,n). In case of circular plate the inner element is a circular plate  
of radius a1 and other elements similarly as for annular plate are appointed. 
 

 
Fig. 1. Cross-section of stepped annular plate divided into n uniform plates 

Axisymmetric vibration of j-th plate element is governed by differential equation: 
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where wj = wj(r, t) is transverse displacement of the plate, r, t - radial and time 
variable, Dj = E hj

3 / 12 (1 – ν 2) - bending rigidity of the plate, E - Young modulus, 
ν - Poisson ratio, qj = qj(r, t) - load per unit area, jρ  - mass per unit volume,  

hj - thickness of the j-th uniform plate element, sj = sj(t) is the shearing force, 
mj = mj(t) is the bending moment and δ( ) is the Dirac delta function. One assumes 
that: s0 = m0 = sn = mn = 0. 

Equation (1) is completed by boundary and continuity conditions. The boundary 
conditions corresponding to annular or circular plates with clamped or simply  
supported or free edges can be written symbolically in the form: 

 B [ ] 0
0

00 ==ar
w ,B       B [ ] 0== narnn wB  (2) 

for annular plates and 

 B [ ] 0== narnn wB  (2’) 

for circular plates. The continuity conditions are: 

 ( ) ( ) ( ) ( ),,,,,, 11 tawtawtawtaw jjjjjjjj ++ ′=′=  j = 1,…,n – 1 (3) 

where “prim” denotes differentiation with respect to r. 
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We assume additionally that the considered plate is supported on elastic  
concentric rings. Let Nj denote the number of supporting rings for j-th plate  
element and rjl - radii of supporting rings (l = 1,…,Nj, j = 1,…,n). Then the function 
qj occurring in equation (1), has a form: 

 ( ) ( ) ( )∑
=

−δ−=
jN

l
jljlj rrtrwktrq

1

,,  (4) 

where kjl denotes the stiffness coefficient of the l-th supporting ring which occurs 
in range of the j-th plate element. 

In case of free harmonic vibration of the system with eigenfrequency ω, for 
each plate element of constant thickness, one assumes that 

 ( ) ( ) ,, ti
jj erWtrw ω=         ( ) ,ti

jj eSts ω=         ( ) ti
jj eMtm ω=  (5) 

Taking into account (5) and introducing dimensionless quantities: ,/ jj arr =  

jjljl arr /=  and ,/ jjj aWW =  in equation (1) and using continuity conditions (3), 

one obtains 
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jjjj DaSS =  

,/ jjjj DaMM =   j = 1,…,n. 

Solution of equation (6) is obtained by using Green’s function method. This 
method consist in determine of an integral operator - an inverse to the differential 
operator which occurs in the considered differential problem. The integral operator 
is defined by a function (Green’s function), which first should be determined. 
Green’s function of an operator is obtained as a solution of an auxiliary problem. 
Determination of Green’s function of the operator L j occurring in equation (6) is 
presented in the next chapter of this paper. 
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Ones the Green’s function G j(r, ρ) of the operator L j is known then the solution 
of equation (6) can be presented in form [3]: 
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where the dashes over symbols r, W, S, M are omitted for clarity. 
In order to obtain the characteristic equation of the considered vibration  

problem, a set of homogeneous equations with respect to unknown quantities 

,
~

jS  jM
~

(j = 1,...,n – 1) and ( )jlj rW  (l = 1,…,Nj, j = 1,…,n) is created. 

 The 2 (n – 1) linear equations of the set are obtained by taking into account 
equation (8) in continuity conditions (7). Another equations are obtained by 
substituting rj = rjl in equation (8). The system of equations can be written in  
a matrix form as follows: 

 A X = 0 (9) 

Where ( ) ( )[ ] .,...,,,
~

,
~

,...,
~

,
~

1111111

T

nNnnn n
rWrWMSMS −−=X  Equation (9) has non-

trivial solution if and only if 

 ( ) 0det =ωA  (10) 

Equation (10) is the characteristic equation to the problem. This equation is than 
solved numerically with respect to natural frequency ω. 

2. Green’s functions 

Green’s function G(r, ρ) of the operator L  considered in this study is a solution 
of equation 

 ( )[ ] ( )δδρ −= rrG ,L  (11) 
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function G corresponding to uniform annular plate with both edges (r = b, r = a, 
b < a) simply supported (S – S plate) satisfies following boundary conditions: 
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where α = b/a. Green’s functions corresponding to annular plates with the other 
boundary conditions were considered in references [3, 4, 6]. 

Solution of equation (11) can be presented in a form [5]: 

 ( ) ( ) ( ) ( )ρρρρ −+= rHrGrGrG ,,, 10  (13) 

where G0(r, ρ) is a general solution of homogeneous equation 

 ( )[ ] 0, =ρrGL  (14) 

and G1(r, ρ) H(r – ρ) is a particular solution of equation (11). It may be shown that 
G1 is a solution of equation (14) which satisfies following conditions: 
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Fig. 2. Stepped annular plates with one ring support 

The general solution of homogeneous equation (14) can be expressed in terms 
of Bessel functions J0, Y0 and modified Bessel functions I0, K0, of the first and 
second kind. Function G1 viz. has the form 

 ( ) ( ) ( ) ( ) ( )�rKc�rYc�rIc�rJcrG 040302011 , +++=ρ  (16) 

where ci‘s are integral constants. The constants are determined by using conditions 
(15). Solving a system of equations obtained on the basis of (15) and using the 
following relationships [7]: 
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π
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function G1 can be written as 
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Function G0 as a general solution of homogeneous equation (14) has the form 
analogous to function G1 given by equation (16): 

 ( ) ( ) ( ) ( ) ( )�rKC�rYC�rIC�rJCrG 040302010 , +++=ρ  (18) 

 
Table 1 

Values of frequency parameter 2
1111 aDh ωωωωρρρρΩΩΩΩ /=  obtained by present method  

and by Rayleigh-Ritz method (italic, reference [2]) for free-free stepped annular  
plate simply supported along a circle with radius c 

  h2 / h1 = 0.6 h2 / h1 = 0.8 

d/a d/a 
b/a c/a 

0.3 0.5 0.7 0.4 0.6 0.8 

3.213 4.117 4.542 3.863 4.141 4.176 
0.2 

3.29 4.14 4.55 3.86 4.15 4.18 

3.880 5.200 6.268 5.066 5.644 5.803 
0.1 

0.4 
 5.27 6.30  5.66 5.81 

 3.972 5.217  4.686 5.037 
0.5 

  5.21  4.68 5.04 

 5.152 6.905  6.234 6.817 
0.4 

0.6 
  6.94   6.82 

 
The constants Ci‘s are determined by taking into account equations (17), (18) in 

(13) and by using boundary conditions (12). The following functions are 
introduced to present the function G0: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )zIzJzIzJzIzJzz 1001001S 12 +−−= νΦ  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )zKzJzKzJzKzJzz 1001002S 12 −−−= νΦ  
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 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )zIzYzIzYzIzYzz 1001003S 12 +−−= νΦ  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )zKzYzKzYzKzYzz 1001004S 12 −−−= νΦ  

 ( ) ( ) ( ) ( ) ( ) ( )zuIzuKuJ
z

uz S20S100S1
1

, ΦΦνΨ −+−=  

 ( ) ( ) ( ) ( ) ( ) ( )zuIzuKuY
z

uz S40S300S2
1

, ΦΦνΨ −+−=  

 ( ) ( ) ( ) ( ) ( ) ( )( )zuJzuYuI
z

uz S30S100S3 2
1

, ΦΦπνΨ −+−=  

 ( ) ( ) ( ) ( ) ( ) ( )( )zuJzuYuK
z

uz S40S200S4 2
1

, ΦΦπνΨ −+−=  

and 
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The function G0 (for S – S plate) can be written using above functions as follows: 

 

( ) ( ) ( ) ( ) ( )(

( ) ( ) ( ) ( )( ))�r����r���

�r����r���
�d

rG

,,,,
2

,,,,
2

1
,

S3S4S43S

S12S2S1S20

αΨρΨαΨρΨ
π

αΨρΨαΨρΨρ

−+

+−=
 (19) 

Finally, Green’s function G of operator L corresponding to simply supported 
annular plate is given by taking (17) and (19) in (13). Green’s functions of 
operators L corresponding to circular and annular plates with other boundary 
conditions are presented in papers [3-6]. 

3. Numerical examples 

Numerical example concerns the free vibration of a stepped annular plate with 
both edges free (r = a, r = b) and one elastic ring support. Let c and k denote radius 
and stiffness coefficient of the supporting ring, respectively, (b ≤ c ≤ a). Plate 
thickness varies stepwise in radial direction along the circle of radius d (b < d < a). 
The plate is divided into two plate elements - free-free annular plates of uniform 
thickness (Fig. 2). Figure 3 presents values of frequency parameter �1 as a 
function of ratio c/a, for various values of stiffness parameter K = k a3 / D2. We 
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can see both parameters: ratio c/a and stiffness parameter K, have significant effect 
on frequency parameter Ω1. If k → ∞ then the frequency parameter of free-free 
stepped annular plate simply supported along a circle of radius c, is obtained.  
Results of numerical calculations are presented in Table 1. The frequency 
parameters are compared (where available) with results obtained by optimized 
Rayleigh- 
-Ritz method which are presented in reference [2]. All calculations were performed 
for ν = 0.3. 

Conclusions 

Green’s function method was used to obtain exact solution to free vibration 
problem of stepped annular and circular plates with elastic ring supports. In 
formulation and solution to vibration problem one takes into account an arbitrary 
numbers of thickness steps of the plate and elastic ring supports. The analysis 
concerns axisymmetric vibration of annular and circular plates with various 
boundary conditions. 

Numerical analysis shows that the parameters characterizing the plate (thickness 
ratio of plate components, radii of components, locations and stiffness coefficients 
of ring supports) have significant effect on free vibration frequency of the plate. 
Results obtained by presented here method were compared with results obtained 
by optimized Rayleigh-Ritz method. Good agreement of results confirms the 
correctness of presented method. 
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Fig. 3. Values of frequency parameter ,/4
2

42
22 Dah� ii ωρ=  (i = 1, 2) of free-free stepped 

annular plate as a function of ratio c/a, for various values of stiffness  
parameter K = ka3/D2; b/a = 0.4, d/a = 0.7, h2/h1 = 0.8 
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