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Abstract. The paper concerns a free vibration problem ofstéesn of non-uniform beams
coupled by non-homogeneous elastic layers. To sthieeboundary problem, the Green’s
function method was applied. An example of the @edunction corresponding to
the differential operator with variable coefficisris presented. The frequency equation is
obtained by using a quadrature rule of a Newtore€utpe.

Introduction

The vibration of systems composed of uniform beamgpled by translational
springs or elastic layers has been studied extelysin the literature (see for
example [1-5]). The authors of paper [1] deal witle problem of the natural
transverse vibrations of a system consisting of tleonped-free beams to which
several double spring-mass systems are attachedsdltion of similar vibration
problem which contains possible combinations ogsilzal boundary conditions,
but the beams are connected by many translatigmaigs without masses, was
presented in paper [2]. Free vibration of a systdrmany beams connected by
translational springs was studied in reference T8BE papers [4, 5] are devoted to
the vibrations of uniform beams connected by homegas elastic layer.
Vibration of two uniform plates coupled by non-hayeoeous layer was
investigated in paper [6]. The solutions of proldepnesented in these papers are
determined by using an exact methods. In referefic8% and [7, 8] the Green’s
function method was applied. Derivation of the @Gfsefunctions for uniform
beams is presented in reference [3]. The Greemistifions for any cases of non-
uniform beams were determined in papers [7, 8].

The purpose of this paper is solution of the freleration problem of a
combined system consisting of non-uniform beamglealiby non-homogeneous
elastic layers. The solution of the problem is oit#d by using a Green’s function
which corresponds to a differential operator odogrin differential description of
the beam vibration. The Green’s function is exprddsy Bessel functions of the
first and second kind. In order to derivation ofe treigenequation and
eigenfunctions a quadrature method is applied.
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1. Formulation of the problem

Consider a system af beams of lengtl. which are coupled bwy-1 elastic
layers with the stiffness module(x) (j = 1,...,n-1). A sketch of the system

considered is presented in Figure 1.
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Fig. 1. A sketch of the system whon-uniform beams coupled byl elastic layers

Let us assume that the non-uniform beams are desimad by the functions
(pA)i(X) and El)i(x) which denote the mass per unit length and fldxugadity
of thei-th beam at arbitrary co-ordinaterespectively. The differential equations
of lateral vibrations of the beams are:

/\l[yl(x7t)] =k, (X)[yz (X’t) B! (th)] (1a)

Aily: (8] = ki (v (8 = v O8]+ k ()i () = i (x.t)]
i=2,3,..n1 (1b)
Anlya ()] = Kooa (0 Ynea (,8) = v (x,8)] (10)

where xD[O,L] andA; (i =1, 2,...,n) are differential operators in the form:

n = (6 (0 25+ (o8 (9 3 @
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Each functiony;(x,t) satisfy homogeneous boundary conditions whichespond
to the attachments of ends of the beams. The gonsgitcan be written

symbolically in the form:
Balyi ()], =0, Byly(xt)],., =0 i=1,2..n 3)
In order to consider free harmonic motion of tharhe with frequencw, the

beam deflections are assumed in the foyrfix,t) =W (x)cosat. By substituting
these equations into equations (1a-c) and bourataglitions (3), one obtains:

d—z[(a)1(x>dW(X)}—af(pA)l(x)vvl(@=k1(x>[w2(x>—wl<x)] (aa)

dx? dx?

S e (T |- om) o (4 -
= ke ()W (%) =W (%) ]+ K (x)[Wea (x) ~W (x) ]

i=2,3,...n1 (4b)
e e, 00 |- i), (009 0, (9T 09 4]
B [W(x)] =0, By[W(x)] _ =0 (5)

Introducing the non-dimensional co-ordinates=x/L, W (&)=W (x)/L
and quantities: (E1), (&)= (E1);(x)/(E1).(0). (pA),(£)=(pA).(x)/(rA)(0),
41 =€), (O)/(1),(0). 2° = ( o8, (0) */(E1),(0).

K;(&)=k (£)L*/(E1);(0), the equations (4)-(5) can be written in the foilog
form:

Re[W(£)] = K, (€)W, (¢) -Wi(¢) ] (62)

ROIW ()] = 14K, (E) W (E) -W(E) ]+ K (€ ) [Wa ) W) ],
i=2,..n1 (6b)
RO[W, (€)= paKa () [Woa(€) - W, (€) ] (6c)

Bo [W(¢)],.,=0. By[W(&)], =0 (7)
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Differential operators\, are as follows:

Ro=
i d{z

o B (655 |2 (o), 0 ®

The solution of the eigenproblem (6)-(7) is obtdingy using the Green’s
functions of the operators (8). This approach Iegadan integral problem which
consists in finding the eigenfrequeney, for which there exists a non-trivial
solution of the system of Fredholm equations ofd¢beond kind. These equations
are obtained by multiply both side of equations K§) the Green’s functions
G, (¢,n7) and than integrate over [0,1]. Using boundary d@mts one obtains:

= [K(7)[Ws ) Wi ) 6.6 0 ) ©a)

W (¢)= i{ﬂ._l )WL) W) ] K ) Walr)-W 0 ) G €7 )
i=2,3,..nl (9b)
Wn(<‘)=un_an1 () [ W (7)Ie.n)n (9c)

By subtraction both sides afth and {+1)-th equations, fori = 1,..., n-1,
the following equations are obtained:

(€)

1

Kia ()Wt (7) G )1 ~[K 0 )W G )[Gib i i +GEn )]

0

Ot O

=i

+

lui—lKi—l(”)Vvi—l(”)Gi (5/7)(}7 i=1,..n1 (10)

whereW, (&) =W, (&) -W (§) andKo(n) = Kn(r) = 0 for 70[0,]].
In order to determine the eigenfrequencies to derivation of the integrals
occurring in equation (10) an approximate methoough be used. In this paper
a quadrature rule of a Newton-Cotes type is prap¢8g In this case equations

(10) follows that:
W (£)= i Ko (6)W.(6))G a6 Jw
=1

Sk (6)W(6)[6.(cq)u+a(eq)]+uk(0).(a)a (g )w

=
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wherew; are the weighting coefficients afl (j = 1, 2,...,m) are the knots of
the quadrature.

Substituting, successively; = 6, (p = 1, 2,..., m) into equation (11) for
i =1, 2,...,n-1, a set oim(n-1) linear equations with unknoww (Hj) is obtained.

This equation system can be written in the form:

AW =0 (12)

Bll BlZ O O L
BZl BZZ BZB O L O
A= o B32 833 834 L
L L L L L L L L
O L Bn—2,n—3 Bn—Z,n—Z Bn—Zn—l
i L Bn—l,n—z Bn—ln—l_
and
) () =/ p®
Bi,i—l - [bjp lsj'psm’ Bi,i - [bjp ]Ej,psm’ Bi'i_l [bjp :|Jsj,psm
where bf;)) = /'Ii—lKi—l(HJ' )Gi-l(gj ’gp)wi

by =-5, -K (6)[ 4G..(6.6)+G(4.6)]w,

by =K..1(6)G...(6,.6,)w
For a non-trivial solution of the equation (12)et@tinant of the coefficient matrix
A is set equal to zero, yielding the frequency equat

detA=0 (13)

The equation (13), is then solved numerically wiéispect to eigenfrequencies.
The eigenfunctions corresponding to the eigenfregies are derived by using
equations (11).
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2. Example of Green'’s function corresponding to nomniform beam

Let us consider a system of two non-uniform beanmnected by elastic layer
with a constant stiffneds Assume also that:

(B, (x)=(21), (0)(”L_1x+1j4, (0A) (x)=(pA) (o)[”L_lx +1j2
i=1,2 (14)

a=b, /b, =h_/hy (a#1), wherebj, ho andby, hi are widht and height of the
i-th beam at pointg = 0 andx = L, respectively. Non-dimensional co-ordinates are
a-1

assumed as followsé = x+1. In this case{D[l,a]. Differential operators

A\, occuring on the left side of equations (6a-c) are:
ﬂ( d2 4 d2 ,8 ) 2
o= | &f— || = , 1=1,2 15
] o’ ( pA) (0)L*
where: ﬁzﬂ., Q4= ('04 )'( ) and boundary conditions (7) have the
2 (a-2)°(&1),(0)
form:

i =0 (16)

By [W (¢)],, =0, B.[W(&)]
The Green’s functions of the differential opera(@fs) can be written in the form [5]:
G(én) =:§[QJ2(/NE) +CY(BE) +Cl {BE) +CK B ) [ 4G n)HE 7)

(17)

whereH( ) is the Heavyside function,, Y,, I,, K, are the Bessel functions of the
first and second kind ar@;; are functions which can be expressed as:

(1) = gl 1(BE (7)1 (T J-(6. )+
A RANG VNG EEX VN AN

The coefficientsCy;, Cy, Cs, Cy4 (i = 1, 2), occurring in (17) are determined on
basis of the boundary conditions. Assuming thatcgilever beam is considered,

(18)
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the coefficients C3 and C; can be determined from the conditions:
Gl._, =Gy, , =0. This coefficients are:

Cy = Cliﬂ(ﬁi ) +Cye (:Bi ) Cyi = Cn%(ﬁi ) +C, 0, (:Bi ) (19)

where:

ﬂ(ﬁi ) ==p [Ks(lg)Jz(ﬁi ) - Kz(ﬁi )Js(ﬁi )]
¢’2(,3i ) ==p [Ks(ﬁi )Yz (ﬁi ) - KZ(:Bi )Ys (,Bi )]
%(lgl ) ==p [IS(:Bi )Jz(ﬁi)_ |2(:3i )‘JS(:Bi )]

@y (,Bi ) =-p [l 3(,3i )Yz (:Bi ) - |2(,8i )Ys (,Bi )] (20)
The coefficientsCy;, C, are determined from the conditionssgg {:a:O,
Gy - =0.

The Green’s functions for beams characterized Werofunctions describing
variable cross-sections are given in reference [6].

Conclusions

In this paper an exact solution to the problem regk fvibration of a system
of non-uniform beams coupled by non-homogeneoustieltayers is presented.
The formulation of the problem establish the difatial equations of motion of
the beams and boundary conditions correspondiiget@ttachments of the beam
ends. By using properties of Green’s functions mategral formulation of the
problem was achieved. The frequency equation obtem system was obtained
by application of a quadrature method to the irde@quations. The presented
solution can be used in numerical investigationvitration of the considered
systems.
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