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LAMINATED COMPOSITES
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Abstract. In the note an interrelation between tolerance lamdogenized effective moduli
for two-constituent elastic microperiodic composéiee examined. It is shown that, in
the case in which constituents are isotropic, éffecmodulae are identical. The proof is
based on the probabilistic analogy formulated fathtkinds of modulae.

Introduction

In many problems of mechanics in which we deal wwiticroscopic description
of periodic microstructured media a certain avedag@thematical objects should
be applied. This averaged objects are defined fferdint ways but these
definitions always depends on the properties ofrttoelel of the microstuctured
media which is taken into account. There existasituns in which different
methods of modelling lead to the models with theesanathematical form (in a
certain special cases) and coefficients definedhenquite different way. With
such situations we deal with for models obtainedahyapplication of the both
homogenization and tolerance averaging techniduesally such kind of models
lead to different or identical descriptions of g&mne physical situation and lead to
very closed or quite different solutions to the sgmnoblem. The aim of this note
is to investigate this problem for static probleshéinear elasticity.

1. Formulation of the problem

Let us consider linear elastic two-constituent f@@d microperiodic com-
posite. Byl we denote the thickness of the repeated layebgng and ;" factors
of two laminae. Hence'l and 7"l are lengths of laminae. Moreover pyand o’
and Cy, and Cy, are mass densities and elastic modulus, respctiyeder the

assumption thaDxs-axis of the Carthesian orthogonal coordinate sysDegX,xs
determines the periodicity direction, we are toriiodescribe two models of
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linear elastic two-constituent laminated micropéito composites: tolerance
averaged model and homogenized model.
Tolerance averaged model

The tolerance averaged model of linear elastic ¢amstituent laminated
microperiodic composite can be represented byybies of equations, cf. [1]
<p>&_<ijl MW =(Gay (YA
’[(09*9°) &~ (C iy 9707 5155l +(Cap 07 I PH(Cio 9 U 70 (1)

A B=1,...,N

whereg®, A= 1,...N, are shape functions. The basic unknowns of theaoce
model are:
1° The averaged displacement figdddefined by

U =(u) (@)

where for integrable functidithe averaged operator is taken as

Xg+1/2

(D04%,%)=7 [ 1(x%, 2 d (3)

X3—112

2° Internal variables¢ ,A = 1,...N, i = 1,2,3, which are introduced by an

additional assumption that the residual displacestenan be approximated by
the finite sum

r=u -U; 0g"¢h 4)

The above basic unknowns should be restricted éyctmditions of the physical
correctness of the tolerance model, which will v&ten in the form

U;.¢"OSv(T) ()

whereA =1,...N, i = 1,2,3. The form and the numbiErof shape functions are
postulated a priori in every special problem. la #symptotic casé,— 0, under
additional assumption that basic model unknowns slosvly varying in all
directions model equations system (1) reducesaddim

<p>&_<ijl Wi =Gy "7

(C19"359%5) " +H(Cau 9 Y ,5= 0 (6)
AB=1,..,N
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The characteristic feature of the above system sossibility of elimination
internal variablest* A=1,...N, i = 1,2,3, from the second of model equations
(6) and in this case (6) reduces to the single tamua

<,0>L‘£“Cijekf|fulikj =0 (7)
where

C.kaf = <Cjkl > _<Cij3pgA’3>H 3;3<Cq3k|9813>
AB=1....N

(8)

is the tolerance effective modulus tensor.

In the case of two-constituent periodic laminatedductor, which is illustrated
in Figure 1, the shape function system consistsxafusively one saw-like shape
function illustrated in Figure 1.

Fig. 1. A fragment of a laminated two-constituearinated rigid composite solid together
with the diagram of applied shape function

In this case the system (1) takes the form:

<,0>@,‘ (G =[G 145

9)
|2(<10>&_<Ciﬂy{ 615) H{Gad 1Gd Y, 50
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where:
(Cy=n'C+gC

(G =(Cy, g,) A2 {C”—+C,7—J (10)

[C] =(Cg,) = Cis—Ci,
In the case of two-constituent laminated compd§ijdakes the form
Cl?kflf _< ijki > [C]up H pq[C] kig (11)

Related to the aim of this note effective modull)(should be rewritten in more
detailed form:

Clu=(Crad ~[Coul®A Ciy

Core =(Cad ~[Coall A Ciky

Coias=(Cuay ~[Coul*{ Coihy

Coo11=(Copd ~[Coall Cll{ Cikyy

Coa11 ={Caand ~[Caall Colfl Cikiy (12)
Clos3=(Coned ~[Conill Cridll Coyi}

C12=(Crod ~[Cral A Cihy

Clis = (Cuarp ~[Caaldl Crilll Cikiy

Coa2s = (Cosod

where, similarly to (10):

©=n'CenC

(G =12 (9 +£J (13)
n'n

[C] =

In the special case in which constituents of carsid laminated composite are
isotropic, i.e. elastic modulus are given by:

ukl_/]d% +H(Q G +9Q)

s (24)
Ciu =A% +1(q g +9 Q)

formulas (10) arrive at:
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(G390, t W 950 +p

(15)
[Cly ={2 90, £ U 9.9 +9 95

where:

{4 =<A9393>=12(A—,'+A—."} [A] =Ag,)=A"A"
non (16)

{4 =(ug, gg>-12(f7’ ;’j (A =(ug)=p -1

In this place of the note a certain two simple $agtiould be observed. Firstly, for
the most of the tolerance effective modulligiven by (12) satisfies condition

(C)-C* =[DI[BA F (17)

for certain material constan®, D", E', E", F', F" related to constituents of the
laminated composite under consideration. For aagermodulus from (12)
condition (17) can be reduced to

(C)-Cc* =[D*{ B (18)

This universal formula (18) cannot be applied esidlely to modulusCSh,=CSF |
Indeed, forC =C,,,,=C5F, =1 it is enough to tak€ = A + 24, D = A + 2u and
E=41in (17) and then

(Cy=C° =[A +2u][A] {2 + 2} (19)

Formula (19) is related to formula (32for the other modulus witho@&,.,, = #
itis enough to tak&€ =C,,,;, =A + 2 andD =F = A + 2u/in (18) and then

(Cy-C°=[A +2,u] (A +24 (20)

Formula (20) is related to formula (12)For C=C,,,, =Cyg3=A+2 it is
enough to tak& =A + 2y and

(€)=C° =[A] {2 + 24 (1)

Formula (21) is related to formula (32for C =C,,;,=C;,5, = 4 it is enough to
takeD =F = and

(©y-c®=[u]" {4 (22)
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Formula (22) is related to formula (32)For C=C,,;3=4 we haveD = A,
F=A+2uand
(Cy-C°=[A]" {A +244 (23)
Formula (23) is related to formula (12)
Now we are to shortly describe the homogenized iogéar elastic two-
constituent laminated microperiodic composite.
Homogenized model

This model is represented by the equation, cf. [1]
<,0>L¢€L: '%iff Uy =0 (24)

where Aﬁf{ is the effective homogenized tensor of elastic uiod his tensor can

be introduced by applying different approaches frahrich the method named
homogenization of periodic tensprdikov et al., [2], seems to be a suitable to

realize the aim of this note. In the framework lwEtapproach tensaﬁﬁf{ should
be obtained as a result of homogenization of thede

A (%) = AR XD (%) +...+ AR x ™ (x,) (25)

where A{.... Al are elastic modulus related to every constituehtthe

laminated medium andy®(x,),...x™ (x,) are characteristic functions ol
regions occupied by the constituents. It is mean th

4Eijch0n;jklgkl = <(2£., Uy Yy, )Chori?kl (Z +4, HU, ) (26)

in
yOHYE 172]12)

where H'(-1/2/2) is a certain Sobolev space. After the rathemplwated
calculation of the aforementioned infimum formutathe isotropic case of elastic
modulus of laminate constituents:

Clijkl :/1'5|j Q:| +lul(41 Cﬁ + ﬁy é)
Clj =A"4q + (4 +99)
one can obtain the following open form of formus), cf. [2], p. 378:
28 AE =& () - KWw-m) QA +2u))-

— A5 EW-E)A -A)IQ +2u )+
+(trE)2(((A=A)2 1A +2u)) + (28)

HAUT T E 2 3 &4,
i= ij=

(27)
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and effective homogenized elastic moduli in therfor
ALy =A+20y~(A+ 2 -A + T Y IQ +u )=(Q + O™
Agzzz = Ag333:</1 + 2ﬂ> _<(/] _/1_)2 /@ + 211 )>
Aoy = Aoy =) —(A +p = +@)?1Q +2u )+ ~@)* 14+ )

o 0 -\ 2 -1\ -1 (29)
A= A =) = (U= D) )y =)
R =(A) (A =2)2 1@ +2u ),
A20323:</J>
where symbolx for x = A,uis defined by
g2 X0 (X XYL L)
= e ‘(’7 g " ej(’f R 9} (30)

for @ and &' taking values equal to a related material constdat every
material constituent, respectively. In the framewof this note we have one from
four following cases: 19' = A", 8" = A", 0r2)8' = A" + 2/, 8" = A" + 2u" or 3)
' =+, 8"=A"+'ord)8" =, 0 =u'.

It must be emphasized that equations (7) and (24) identical from
mathematical viewpoint but effective modulus caméfints are based on the
different physical approaches. In the literaturer¢his known many examples of
periodically microstructured solids for which honeoized and tolerance effective
modulus are different from mathematical viewpoint @pproximately equal for a
certain material properties. There also exist sitna in which these modulae are
identical. Hence, the question: does any clear emastiical interrelation between
homogenized and tolerance effective modulus egetms to be fundamental. In
the next paper we are going to show that in the cdtwo-constituent laminated
periodic composite related effective modulus in thkerance and homogenized
case are simply connected under the probabilisterpretation of second of them.

2. Probabilistic analogy; comparison of effective modulus

Let us note that for most of homogenized effectivedulus (29) the related
difference between averaged val¢€) of modulus C and its homogenized

effective valueA° has the form

(C) - K =((x= R y-9/6) =§((1—v') K- %) (@ )'y—p " y) +

: (31)
1%

H VXA R)( Y - )y)



78 L. tacinska, E. Wierzbicki

where X', X', Yy, y' and @', 8", take values from all material constant of
constituents and fov = 77/, V' = ". We are to formulate exact meaning of the
formula (31) for every effective modulus. To thisdea few cases will be
examined.

First casedeals with situations in which we haxe=y andx’ =y". In this
case formula (31) takes the form

(C) - K =((x-R?16) =2 (A-V') %~V &) +'i7(w 'x-(1-0 ¥x)° (32

v
0!
The above special case (32) of formula (31) deat$usively with one modulus
C=A

Indeed, forx = Cy120= Cgs11= A it is enough to také@=A + 2u, x = A + 2u and
y = Ain formula (31) and arrive at

(CY=A° =((A+2u-A =20)} A ) ~7)IQ + )=
=((A+ =2 =) +2u )~ ~F)2 1A + 2 )

The above formula coincides with (29)
Second casés related to all modulus (29) witho@ = A, andC = . Taking
account formula (32) fax= A + 2uand 8= A +2u we obtain

(33)

(C)= A =((A+2u-A +20) I} + ) (34)
The above formula coincides with (29%orx =4 and@= A +2u we obtain
(C)= A =((A=2)*IQA +2u)) (35)

The above formula coincides with (29orx = ¢ and8= 1 we obtain
(Cy- A =((u-1)°1 ) (36)

The above formula coincides with (29For x = Coss= Aand 8 = A +2u we
obtain

(C)= A =((A=2)*IA +2u)) (37)

The above formula coincide with (29)

Formulas (31) and (32) together with (33)-(37) fanedamental for formulate
the probabilistic analogy of homogenized effectivedulus. This analogy will be
understand as the method of the proof of the fallglemma:
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Lemma. Tolerance and homogenized effective modulus iddnfar the two-
constituent microperiodic laminates provided thatetance averaged model is
based on the exclusively one saw-like shape functio

Proof of the above lemma will be decomposed onteettsteps. The first step
includes simple results from the probability the®ly

Stepl. Basic tools from probabilistic theory

Let us consider vector-valued random variable veidtlusively two known
values Ky, Y1), (X5, Yo) O R? taken with probabilitiep; andp,, respectively. Hence
conditionsp; + p, = 1 and 0 <p;, p» < 1 hold. Probabilistic analogy is based on
the interpretation of the mentioned above randoriakike as a special case of two-
dimensional random variable= (X,Y) defined by

POX.Y)=R RX. ¥Y=p BX%Y=0 EXX=0 (38

Hence boundary mean valuesZoére equal to:

E(X)=pX+RpX%

(39)
E(Y)=RpY+ RY

and covariance coefficient
cov(X,Y)= E[(X- EX)(Y- EYI= ppH XKD (40)
where X = X"= X i [Y] =Y - Y.Moreover
D2X =cov(X,X)= E[( X- EX)( X- EX]= pf K (41)
Formulas (39), (40), (41) are started point forghbsequent steps of the proof.

Step2. Probabilistic analogy formulation

Let 8' and 8" be the known positive parameters which shouldnberpreted
as a certain constituent elastic isotropic moduldds interpretation have been
described in the previous section. Moreover denote

NV v, v v
V=Y LsYy vyt
p= gl g) =gl +) (42)
wherev' ="/l andv"=1" | .Hence

VotV =1 %, % >0 (43)
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and positive constantg,, V,, can be treated as a certain probabiliigg, related

to pairs Ky, Y1), (X2, Y2) taken as the values of varialdalefined inStepl. Let us
assume that in the subsequent considerations ghitileslp;, p. take values

Pi=Ve Pi=Y (44)

Moreover, letEgX and EgY together with coy (X,Y) and Dgx denote scalar

parameters considered random variable defined 8y, (40) and (41) fop,, p.
defined by (44). Hence, after simple calculations oan obtain:

v v

_ LV vV
Ee(x) - p1X1+ pzxz —(E Xl +? Xz)/(g +E) (45)
E, (V)= BY+ R =5 Yo YIS +0)
and
covy (X,Y)= B[(X- B X(Y- EY]=
., _ gavv (46)
—Ve\/e[x][ﬂ—m[ iy
Moreover

D,?(X,Y)= El( X~ E X]*= )
_ _ ggvv [

Now we are to realize the crucial part of the proof

Step3. Crucial part of the proof

To finish the proof we should repeat observatiormmf the last section.
The first from this observations is that covariaotshe form (17) or their special
case (18) represent tolerance effective modulus.sBtond from this observations
is that covariants of the form (31) or their specase (32) represent homogenized
effective modulus. It means that if we prove thdtedences of the form (17)
connected to tolerance effective modulus are etugte differences of the form
(31) connected to the related homogenized effectivedulus then we can
conclude that tolerance and homogenized effectisdutus tensors are identical.
We are to show that the aforementioned differeacesqual.
To this end let us take into account (46). By \araf (13) we have
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=2 +2 (48)

and then

I _[XY _ viIk]y

G 0,0 Voo “9)
VoV
From the other hand side, since
VoV
1/60)=—+— 50
1/6) R (50)
and
X=(xI Q)16 =\,X +\, %X = E, x (51)
we have

((X=X(y-NO=UEE(x EX Yy Ey= vy k] (52

together with a special case of (52).
(x=%)210) =AU E(x-BEI=y Y ¥ (53)

By comparison of (49) and (52) by virtue of (46karan obtain

A v—/ g = Y
- -/ 6 =
(x=X)(y-W/6) 4 (54)

Just proved relation (54) means that tolerancehmmaogenized effective modulus
tensors are identical. This ends the proof.

3. Final remarks

It was shown that, in the case in which constitaegrte isotropic, effective
modulae are identical, provided that we deal w#émihated composite with
microperiodic structure. It a well known fact thiere exist composites with
microperiodic structure for which tolerance (focertain choice of a number and
a form shape functions) and homogenized modulusddferent. For the most
cases an answer to questiodader what assumptions tolerance and homogenized
modulus are identicalandHave mentioned above probability analogy ever plays
any significant role in the connection within thesedulu® are still open.
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