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Abstract. In the paper the algorithm of numerical solutidnhgperbolic heat conduction
equation is presented. The explicit and implicitiarats of finite differences method are
applied and the results of computations are shown.

1. Hyperbolic heat conduction

Hyperbolic heat conduction equation is of the f¢tn?2]
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wherec [J/(kgK)] is the specific heap [kg/m’] is the density) [W/(mK)] is the
thermal conductivityQ (x, t) [W/m?] is the source functior, [s] is the relaxation
time, T, x, t denote temperature, spatial co-ordinates and time.

For constant values c, p the equation (1) can be written as follows
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wherea=A/(cp) is the thermal diffusivity.
Equation (2) is supplemented by boundary condition
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and initial conditions
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2. Approximation of time derivatives

In order to solve the problem (2), (3), (4) thedigrid
O=t’<t'<..<t? <t <t! <. <tf <o (5)
with constant stegat =t " —t " is introduced.
Using the Lagrange interpolation [3] for the poilﬁté‘z,T f‘2), (t T “1),
(tf,Tf),whereTf‘2 =T(x,t"2), TH:T(x,t"l), T =T(x,tf) one obtains
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On the basis of (7) the time derivatives are calea and then
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Taking into account the formulas (8), (9) the faling approximation of left-hand
sideL of equation (2) is obtained
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It should be pointed out that the right-hand $td&f equation (2) can be written
for timet =t "2, for timet =t " or for timet =t .
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3. Finite differences method

For 2D problem and domain oriented in Cartesiaorctinate system = {X, y}
one has

O°T(x ¥, 1), 0°T(x ¥ 9

0 X 9y (11)
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The following approximation of (11) with respect the geometrical co-
ordinates for constant mesh stepan be taken into account [3, 4]

0°T  0°T 1
(axz +6 sz :F(Ti—l,j +Ti+1,j +Ti j-1 +-Ii—j, +1 -4 Tj, ) (12)
i
where: T, =T(X, ¥, 9, Ti; =T(X., Y. D) etc.

We assume thad (x, y, t) =0. Using the explicit scheme of FDM one obtains the
following approximation of equation (2)
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wheres = f — 2or s =f — 1, while for the implicit scheme of the FDM one has
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From equation (13) results that
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this means
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From equation (14) one obtains
: Cacy Al f f f -
|:(At)2 + SAL +F]T i F(Ti—l,j +Ti 1 +Ti i -1+-Ii-j, +1) - (17)
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Using formula (16) the stability criterion should formulated [3, 4].

4. Results of computations

The rectangular domain of dimensions 0%02.04 m has been considered.
The following thermophysical parameters have bessumed:A = 1 W/(mK),
¢ = 4000 J/(kgK),p = 1000 kg/m. The initial temperature equalg = 5°C. On
the left side of rectangle the boundary conditiothie form

0sys004: TOYFS[(2- U F-4y0- U] (9)

is acceptedl( = 0.04 m, Ty = 50°C, Tmax = 100°C), on the remaining part of
the boundary the temperatufg= 50°C is assumed. The problem has been solved
using the explicit scheme of finite differences Inoet (c.f. equation (16) for

s =f — 1) with mesh step = 0.001 m and time stefpt = 1 s. The computations
have been done for relaxation time O andr = 15 s.

In Figure 1 the positions of isotherms after 600 &0d 3600 s are shown. On
the left hand-side the results fo= 0 s are presented, on the right-hand side for
t=15s.

Figure 2 illustrates the courses of heating cuhth fort = 0 as well as for
t =15 s at the internal points (0.005, 0.02), (D@@2) (center of rectangular) and
(0.015, 0.02).

It is visible that the differences between the Bohs fort = 0 andr = 15 s are
especially big for the initial stages of heatinggess.
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Fig. 1. Temperature distribution after 60, 300 8600 s ¢



Application of FDM for numerical solution of hypefic heat conduction equation 139

60
T[°C] 1
i
50
1= C> /< 1=15
wll  ~—77 AN
D(/
/
/
/
20 T
0 720 1440 2160 2880 3600 t[s]

Fig. 2. Heating curves (1 - point (0.005, 0.02),pint (0.01, 0.02), 3 - point (0.015, 0.02))
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