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Abstract. In the paper the applications of inverse problenthe thermal theory of foundry
processes are discussed. Both the macro modelslidifisation (in particular the fixed
domain approach) and macro/micro ones are consid@ree information necessary in
order to determine the unknown parameters of tloegss results from the knowledge of
cooling (heating) curves at the selected set aftpdiom casting and/or mould subdomains.
The identified values can correspond to the thehwysigal parameters of casting and
mould, parameters appearing in boundary conditémtb initial temperatures. In the paper
the newest results obtained in this scope by thboasi are presented. The examples of
numerical solutions are also shown.

1. Mathematical formulation of direct problems

The energy equation describing the casting sotigiion is of the following
form [1, 2]

oTLxy —O[A(T)OT(x §]+ 125 Y fsa(tx’ ! (1)

c(T)
where ¢(T) is a volumetric specific heal(T) is a thermal conductivityl. is
a volumetric latent heafg is a volumetric solid state fraction at the coerssdl
point from casting domaif,, x, t denote the temperature, geometrical co-ordinates
and time. One can see that only conductional heatster is considered and
the convection in the molten metal is neglectede &huation concerning a mould
sub-domain is simpler than (1), namely

QLA NG R ACT) @

wherec, is a mould volumetric specific heat, is a mould thermal conductivity.
In the case of typical sand molds on the contadtisa casting-mould the conti-
nuity of temperature and heat flux can be accepted
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2T, 9T(x
an an (3)
T(x =T, (x 1

whered/on denotes a normal derivative.
On the external surface of the system the conditiangeneral form
0T(x 1) |_

on

ﬂ}mo, (4)

is given. In particular the typical formula deteninig the heat exchange between
mould and environment is the following

0 T.(X 1)

_Am
on

=a[T,(x O -T] )

wherea is a heat transfer coefficierf, is an ambient temperature. For titrre O
the initial values are also known

t=0: T(x0=T,(¥. T.(x0)=To(} ®)

It should be pointed out that the equation (1) tamss a base for the
numerical modeling of solidification both in the eona (e.g. [1]) and the
micro/macro scale (e.qg. [3, 4]).

In the case of macro model (the one domain apprfiach, 10] is considered),
one assumes the knowledge of temperature-depehateion fs in the mushy zone

TO[T,, T.] sub-domain and then

0 fs(x t) _ dfg oT(x t)

ot dT ot %
Finally the equation (1) takes a form
d fs [0 T(X 1) _
[C(T) = } 3t =0[A (Mo T(x 9] (8)

The expression in brackets is called a substihegetal capacitZ(T) [1].
One can see that for molten metal and solid Hedy0 andfs = 1 correspondingly,
and then t/dT = 0. Summing up, the equation (8) describes teemhl processes
in the whole, conventionally homogeneous, castimmain.

For instance, the function fulfilling the above rarlated conditions can be
assumed in the form
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T-T)
f = L 9
s(T) [TL_TJ 9)
then
n-1
dfs(T)z_ n T -T (10)
dT TL_TS TL_TS
and finally
L T -7\
C(M=c¢c + n| —t 11
M=+ (TL_TJ (12)

wherecs is the mushy zone volumetric specific heat. Thetigat L/(T, - T,) = c,,

is called the spectral volumetric specific heatw®ocan write the last formula in the
form

n-1
T -T
C(T=c+ o 12
(M=6+g, (TL_TJ (12)
It is easy to check that

n T -7\
[l +c,n| = dT=c(T - T)+ L (13)
Ts T -Ts

and this result confirms the proper approximatib@). The value of exponemt
can be chosen on the basis of adequate experiméaty. popular and often
quoted in literature is the case concernmirgl. Then

L

L S

=6 +G, TOT T] (14)

In literature one can find also the 'direct’ deforis of C(T), in other words the
form of functionC(T) is assumed a'priori, for example [5]

om=er(en-ol 5, T 1 a9

wherecs is a volumetric specific heat of solid, whig., can be found on the basis
of condition
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[c(M)dT=¢(T-T5)+ 1L (16)

The example concerning the identification of pararseappearing in formula (16)
has been shown in [5].

If one considers the solidification of pure metalseutectic alloys then it is
possible to introduce the artificial mushy zoneresponding to a certain interval

T D[T*—A T, T+A T], whereT is a solidification point, and next to define the

course ofs for the interval assumed [2].

The energy equation (1) can be used also in the @Bsiicro/macro approach
to solidification process. In the group of modelsrén discussed [3, 4, 6] we
introduce the following function (in order to sirfglthe further considerations the
solidification of pure metals or eutectic alloys déscussed, the generalized
micro/macro model is presented, among others,])n [7

(% t)=N(x t) V(x 9 (17)

whereN is a grains density [grainst V is a single grain volume. If we consider
the spherical grains antd= dR/dt is a crystallization rateR(is a grain radius) then

v(x t):gﬂu u T)dTT (18)

In the case of the others types of crystallizatieng. dendritic growth) the
coefficientv < 1 can be introduced [4] and then

V (X, t):gm/u. u( r)dr} (19)
Finally
w(X, t):gm/N(x, ) ﬁ u( 7)d r} (20)

In the case of so-called linear model the funcfiga assumed to be equalxt)
fs(x )= N(x ) V(x 9 (21)

and iffs = 1 then the crystallization process stops. Thevatve of fs with respect
to time equals
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0f(x 1) _ R(x 0° 0 N(x ) 20 ROX)

One can see that equation (21) determines the ddoabevolume (volume
fraction) and it is the correct assumption on tinst fstages of crystallization. In
order to take into account the geometrical limitas of spherical growth in the
final stages of the process the equation (22)sis alodified to the form

3
of, =477V[R—6—N+R2 IR N} (1- £) (23)

ot 3 ot ot

The exponential model resulting from the theorypmsed by Mehl, Johnson,
Avrami and Kolmogoroff (e.g. [3, 4]) bases on tbédwing formula

fs(x t) =1-exd-w x,t] = 1~ ex;{ —gm/N &t ﬁ R (x,t} } (24)

in other words the expression of type (17) corresigdo the exponent in equation

(24). For the small geometrical volumes ex@( = 1 - wand the formulas (21),

(24) are the same.

Additionally considering the group of models heigcdssed it is assumed that:

i) a local and temporary number of nuclei is prapoel to the second power of
undercooling below the solidification poiht

N 0 =78T(x 97 =7[ T -T(x )]° (25)

where n is a nucleation coefficient. The nucleation stopghen
AT(x t+A)<AT(x ), for T(x, )>T : N(x §=0.
ii) the nuclei growth is determined by the formula

dR(x, t)

T HAT ™ (X 1) (26)

where is the growth coefficientmO[1, 2] (see [3, 8]). One can find also the
other equation, namely

dR(x 1)

u(x t)= =, AT(% 0%+, AT( % )’ (27)

wheres, (& are the growth coefficients.
The interesting modification of Mehl-Johnson-Avraikdimogoroff approach
can be found in [8, 9].
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2. Sengitivity analysis

The methods of inverse problems solution discussdtiis paper require the
formulation of sensitivity models with respect tbypical, boundary or initial
parameters (in particular the so-called sensitizdggfficients must be determined).
The sensitivity of temperature with respect to paeter p; is defined in the
following way [10]

Uy (x4, b2, B5) =, im Tt b BHO B Apk)”(“ﬁ )

(28)

and it corresponds to the partial derivative ofggenature with respect . So the
sensitivity function informs about the changesevfiperature due to changesaf
The definition (28) is often used in practical apaiions because the knowledge
of two solutions corresponding to the small changfgs allows (using the diffe-
rential quotient) to determine the local values s@nsitivity. More general
approach to the computations of sensitivity funttimnsists in the differentiation
of the basic equation and conditions with respethé parameter analyzed (direct
approach [10]).

Below the sensitivity of temperature field in thestem casting mould with respect

to mould parameters,, A, boundary parameters, T, or initial ones(To, Tmo)

will be discussed. At first, the energy equation {& casting domain will be
differentiated with respect o

o0T(x t 0
{ M2 )} O [A(m T(x ) (29)
0 p, 9 p,
After the mathematical manipulations one obtains
dU(x, t dA
cm Y0 g ux o | LD yooy Txy
ot dT (30)
_dcC (T) 0T(x 1
U, t) ———
dT 0t
whereU = 9T/dpy.
For the mould sub-domain (assuming the constanegabfc,,, An)
J0A_c Jdc
¢ QUnD ) ay g [On Cn 0G0 )0Ty(60 g,
ot op, A, 0p, ot
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whereU,, = 0T/op«. The Robin condition (5) leads to the formula

Ta

_9An 9T, (6 ), 0Uu(xD 9 pj(sz)

ap, 4n ™ adn 0

ZK [Ta(x ) -T] +C{Um(x 9 —Z

while the continuity condition (3) on the contaatface takes a form

J9AM) g 0T ey QU Y 9 0Tu(x ) ;9 Un(x 9
dt on on 0 p, on on
Ux t)=U,(x 1)
(33)
The sensitivity model is supplemented by the ih@t@nditions
t=0: U(x,0)=U,, U, (x,0=U,_ (34)

If the sensitivity analysis does not concern théiah temperatures then the
conditions (34) are uniform (zero-ones). It shoudd pointed out that the
sensitivity equations are essentially simpler i& @onsiders the actual parameter
p«. Additionally the assumption that the thermal aactiiity A is a constant value
or piece-wise constant function leads to the simiolen of sensitivity model.

In the second part of this chapter, as an exanfpheiayo/macro approach will be
presented. In particular, the sensitivity of sdiadition process described by the
Kolmogoroff model with respect to the mould therncainductivity A,, will be
discussed. The construction of sensitivity modeth wespect to others parameters
is similar, of course. Assuming the constant nundfaruclei (nuclei density) we
obtain the following form of exponent in equati@a)

t

w(x, t):gm/N {j u( 7)d r} (35)

0

while the nuclei growth is assumed to be determmmethe formula

OR(x 1)

o =uAT(x 1) (36)

u(x t)=

which corresponds to exponent = 1 (c.f. (26)). Forc(T) = ¢ = const and
A(T) = A = const (taking into account the small intervalt@perature in which
the essential phenomena connected with solidibogproceed, such assumption is
quite acceptable) the energy equation (1) takesm f

CaT(x, t):/lD
ot

dw(x 1)

T(x O Lexpb w (x, t] T

(37)
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or

oT ., ‘ ’ 4 ‘ ?
oo SADR 4rvN LA Tum Tdr} exr{ 37V A({ Py Tdrj ] (38)

According to the rules of direct approach the eiguat determining the thermal
processes in the system casting mould should lerelitiated with respect té,
and then

XM : c%)t(’t): A 2U(xd Q
dU (X 1) 2 Gy 0 T(X% 9
x@Q : ¢ —M 1 = ) U 5y -4 —n 7
m G B oU(xH) 1 ot
Ux t)=U_(x 1) (39)
xr : _AaU(x,t)z_aTm(x, t) ) 0U,.(x1)
on on m on
@ ,: — A, __aum(x, t a U, (x ty —6 (% 9
on on
t=0: U(x,0)=0, U, (,0=0

whereQ, Q., 'y, Ny denote the casting and mould sub-domains, theacband
outer surface of mould, correspondingly.

The function Q in equation concerning the casting volume restitsn the
differentiation of source term in (38) with respeztl,,

9 ‘ ’ 4 t 3
Q:H{47TVN L,UATL[,UATCITJ ex;{—gﬂvN(J; ,LIATde ]} (40)

m

and we obtain (fov = 1)

Q=47N Lexp{—g 7N r§j[4nN IAT @ré=2/AT poro= 17 (41)
The last formula seems to be complicated, but ersthge of numerical simulation
the computations of local valu€sare rather simple.

3. Inverse problems

In order to explain the details concerning the ieeeproblems solution the
following example will be more exactly presented. [@/e consider the linear
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model of crystallization (equation (21)) and theritfied parameter corresponds
to the nuclei densitil = const. Thermophysical parameters of casting radtzre
constantA(T) = A, ¢(T) =c. The influence of mould is approximated by the iRob
condition given on the external surface of cas{imgn condition of type (5) is
a substitute heat transfer coefficieftjs an assumed ambient temperature).

The additional information necessary in order ttvesdghe identification problem

results from the knowledge of temperature valwgésat the selected set of points
x from casting sub-domain for time§ namely

T(fii:Td(Xiy tf)l |:11 21--'1M 1 f = l’ 2’]’: (42)

At first, the least squares criterion is applied-[13]

F

s=> 3 (1 -T.) (43)

i=1 f=1

Where'l'if =T(xi,tt) is the calculated temperature at the pojnfior timet ' for

arbitrary assumed value o, T, =T, (xi,tf). Differentiating the criterion (43)

with respect to the unknown grains denditgand using the necessary condition of
minimum, one obtains

ds M & oT/'
_/]:22 Z(Tif _Tdfi)m

i=1 f=1

=0 (44)

N=NK

at the same timB for k = 0 is an arbitrary assumed initial value of nudkensity,
while fork > 0 N“ will result from the previous iteration step.

FunctionT," =T(x,t') is expanded into Taylor's series about known valuk
namely

0T’
+

Tif =(-I-if)k o (Nk+1_Nk) (45)
or
T =(T) +(uf) (N - NK) (46)

where (Tif )k denotes the temperature at poinfor timet " found on the basis of
energy equation (1) and adequate boundary-initintitions under the assumption
that N equalsN, (U»f )k are the sensitivity coefficients found on the basf

sensitivity problem solution under the same assiampfo, we have
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Sl ) @) (v-n) =g (u) =0 @)

and

. k=0,1,.. (48)

The estimation of paramet®f is realized using the iterative procedure assuming
the start poinN® > 0. For every iteration step the basic problem sensitivity
one should be solved assumiNg= N¥, and next using the equation (48) the new
valueN = N can be found.

Now, let us assume that we want simultaneously tijetwo unknown
parameters, in particuld andc (one can see that the unknown parameters belong
to
the different levels of solidification process d&sition - macro and macro/micro
levels). Then the necessary condition of functiof@d) minimum leads to the
equations

0S _ (T 0T/ —

: —ZE;(P 7)) N N:Nk_o

95-2 F(Tf-Tf)aTif = -
ac ,Z:l:f; 9 e c:ck_

where T, =T,(x, t'), T"=T(x, t'), N, ¢ for k=0 are the initial values

(start point), while fok > 1 result from the previous computations. Intr@dg the
sensitivity functions we have

(50)

whereU; is the sensitivity with respect i, U, is the sensitivity with respect to
Now the functionTif is expanded into Taylor series, namely
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T ) () (N () (e e) e

Introducing (51) into (50) one obtains

(52)

This system of equations allows to determiiti¢t andc“*”. If the iteration process

is convergent then the sequenci}{fand {c'} tend towards the real values Nf
andc.

4. Examples of numerical solutions

The inverse problems discussed here can be solgety uhe numerical
methods. The greater part of results presented besn obtained using the
boundary element method [14, 15] though the othethods (FDM, FEM) have
been also used.

The first example is very simple, but it shows thasic elements of
identification problem solution. So, the followirdd boundary-initial problem is
considered

0<x<L: caT(X’t) =A 62T(>2<, Y
ot 0Xx
x=0: q(x t)=gq, (53)
x=L: q(x =0
t=0: T(xt)=T,(x

wherel is the thickness of the platg, is the known boundary heat fluXg(X) is
the initial temperature.

The direct problem described by equations (53) bansolved under the
assumption that the thermophysical parameteanid A are known. The inverse
problem discussed resolves itself into identificatof c on the basis of additional
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information concerning cooling (heating) curvesha selected set of points from
the domain considered.

At first the model of sensitivity with respect t must be constructed.
Differentiating the equation and conditions (53)hwiespect t@ one obtains

D<x<lL: c2Z(xY _, OZZ(Z(,t) 9 T(xY
ot 0 X ot
x=0: W(x )=0 (54)
x=L: W(x =0
t=0: Z(x t)=0

where Z(xt)=9dT(x §/dc and W(xt)=-49dZ(x 9/d x. The solution of

problem (54) allows to find the sensitivity coeféints appearing in the final
formula (c.f. (48))

Ck+1 — Ck + i=1 f=1 , k:0, 1’__ (55)

The sensitivity model is coupled with the basic ofterm dT/ot) and the
computations of temperature and sensitivity fieldeust be realized
simultaneously.

The results presented below [16] concern the glate 002m, A =1W/mK,

c=10° J P K - this value is identified). The boundary heatxflequals

0o = 3 010" W/n? initial temperaturel, = 20°C. The information concerning the
courses of temperature at the poirts 0 (plate surface)x = L/4 andx = L/2
(Fig. 1) results from the solution of direct prambléor c = 1 J/niK.

300 5000000

T[°C] x=0 ck

250

4000000

x=L/4 3000000

150

T

2000000

100 rezil
value
=L/2
x-L/ L —

S a— — /

0 o
10 20 E 0 50 60 t[s] o i 2 3 4+ k
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Fig. 1. Heating curves Fig. 2. Identified volumetspecific heat

In Figure 2 the values of identified volumetric sifie heat during successive
iterations for different initial values® are shown. It is visible, that the iteration
process is quickly convergent.

The second example is more complicated and theocAioomputations is the
identification of latent heat [17]. The 1D castif(§ = 2.4 cm) made from Al-Si
alloy (5% Si) is produced in the sand mould. Theapeeters of casting material
are equal tas = 2.943 MJ/nK, ¢, = 3.0,¢. = 3.07,4s = 250 W/mK, A, = 177,
A= 104,L = 990.6 MJ/m (this value is identified). The volumetric specifieat
of mould ¢, = 1.750 MJ/rK, while the thermal conductivity, = 1.5 W/mK.
Symbols L, P, S correspond to molten metal, mushy zone and sdiades
Additionally it was assumed that the substituterrtied capacity of mushy zone
results from formula (14). The border and initiaperatures equdk = 577C,

T, = 650C, To = 660C, T,o = 20°C. On a stage of numerical modelling the finite
differences method (FDM) has been used. The castmgd domain has been
divided into 100 control volumes (20 - casting,-88ould), time stejt = 0.001 s.
On the external surface of mould the non-flux ctindi has been assumed.
The values of 'measured’' temperatures result fhardirect problem solution (for
above collected input data) or this solution dis&at in random way (in order to be
closer to real measurements). The parametgasdc,_ are known, whileC(T) for

TO[ T, T, ] is unknown. Summing up, the following functiorcisnsidered

2.943 T< 577
c(T)= 3.006+7—L3 TO[ 577, 65f (56)
3.070 T > 650

The reconstructed value of latent heat equats990.6 MJ/m The start point
from iteration process correspondsd@L’ = cg). One can notice that distance
betweerl’ and real value df is rather long.
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Fig. 3. Heating curves Fig. 4. Sensitivity functi@d0 s)

In Figure 3 the 'measured’' heating curves at paints 1.5 cm and, = 2 cm
found on the basis of direct problem solution for 990.6 MJ/m are shown.
The pointsx; and x, belong to the mould sub-domain. Figure 4 illugsathe
distribution of sensitivity function for the findime of simulation (200 s).
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Fig. 5. Identification of latent heat Fig. 6. Chas@é criterionS

In Figure 5 the iteration process of latent heantdication is shown. The
successive versions correspond to the assumptienonly the heating curve for
X, = 1.5 cm is introduced to criterion (43), only theating curve fok, = 2 cm is
introduced to criterion (43) and, finally, the batbrves are taken into account.
Next figure shows the changes of functior&lfor successive iterations (the
temperatures at the points= 1.5 cmx, = 2 cm have been applied). It should be
pointed out that the good identification has bebtaimed on the basis of heating
curves from mould sub-domain. This information seetm be essential from
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the practical point of view because the temperatneasurements at this region
are simple and exact.

Presented below next example concerns the macm@miodels. The aim
of computations [6] was the identification of nuctkensity (c.f. formula (48)),
at the same time the Kolmogoroff model of crystatfiion is taken into account.
The plate of thicknesk = 0.03 m made from aluminium has been considered.
The following input data are assumed: thermal cotidily A = 150 W/mK,
volumetric specific heat = 2.87501¢ J/nTK, latent heat per unit of volume
L = 9.75 010 J/nt, solidification point T = 660C, growth coefficient
u = 3 010° m/sk, initial temperatureT, = 662C, boundary temperaturg, =
= 650C (the influence of mould is substituted by theigilet condition).

In order to estimate the value WNfthe courses of cooling curves at the points
1-0.0015m (distance between the point and the boundapjadé), 2 - 0.0035n
and 3 - 0.0055m have been taken into account - Figure 7. Theyltrésom
the direct problem solution under the assumptiat kb= 10° nuceli/ni. Figure 8
illustrates the solution of inverse problem forfeliént initial values ofN’. It is
visible that the iteration process is convergemt #re solution close to the exact
value is obtained after the several iterations. preblem has been solved using
the BEM.

662 200
T[°C]

=

L]
v

54
8! H 10tls] 0 2 4 6 8 10 k

Fig. 7. Cooling curves Fig. 8. Inverse problem dolut
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Fig. 9. Disturbed cooling curves Fig. 10. Identfion process

The last example shows the solution concerningsitmelltaneous identification
of nuclei density and volumetric specific heat ¢t thasis of linear model of
crystallization (c.f. formula (52)). In particult#trte aluminium plateG =3 cm - 1D
task) has been considered [18]. The influence afilchs taken into account by
the Robin condition forx = -1.5 andx = 1.5 (heat transfer coefficient
a = 250 W/niK). Nuclei densityN = 10, volumetric specific heat= 2.875 MJ/rK,
the others parameters of material are equa 150 W/mK,L = 975 MJ/m,
4 = 3010° m/sk? solidification pointT’ = 660C, pouring temperaturg = 670C.
The cooling curvesTd(xi, tf) corresponding to the basic solution have been

disturbed in random way (Fig. 9). The results adniification corresponding to
successive iterations resulting from equation @) shown in Figure 10\ = 1,
c® = 1). One can see that the iterative processnisezgent and the final values
of N andc are sufficiently exact.

Summing up, the information concerning the coolingves at the selected set
of points from casting domain allows to reconstrpetrameters determining
the solidification process even in the case whay tielong to different (macro
and micro) levels. The least squares criterion Iictv the sensitivity coefficients
are introduced constitutes a very effective toal famerical solution of inverse
problems from the scope of thermal theory of foyngrocesses (the same
approach has been used by the authors of this @mdeerin the case of others
problems).
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