Please cite this article as:
Andrzej Z. Grzybowski, On some new method of incorporation prior information along with its uncertainty in regression
estimation, Scientific Research of the Institute of Mathematics and Computer Science, 2006, Volume 5, Issue 1, pages
23-31.
The website: http://www.amcm.pcz.pl/

Scientific Researctf the Instituteof Mathematicand Computer Science

ON SOME NEW METHOD
OF INCORPORATION PRIOR INFORMATION ALONG
WITH ITS UNCERTAINTY IN REGRESSION ESTIMATION

Andrzej Z. Grzybowski

Institute of Mathematics and Computer Science, Czestochowa University of Technology, Poland

Abstract. The paper is devoted to the problem of incorpogaprior information in the
regression estimation. In series of papers, seég,[8«e have proposed and analyzed some
model of uncertainty which allow incorporating priaformation along with its uncertainty
via some Bayes estimators. We also introduced ¢fiemof an Index of Uncertainty (1U)
which indicate how useful the information and cansmtly the proposed estimators are.
The results and methodology are summarized in H@re, assuming different than in
the mentioned papers prior knowledge about theessgsn problems, we propose a new
description of uncertainty along with an index afcartainty which was developed on
the base of computer simulation.

Introduction

Consider the linear mod& = XB + Z, whereY is a vector of observations
of the dependent variabl¥, is a nonstochastia(x k) matrix of the observations
of explanatory variablegd is a k-dimensional regression parameter (i.e. vector
of unknown regression coefficients) aAds ann-dimensional vector of random
disturbances. Assumg(Y) = XB, Cov(Y) = Z. The paper is devoted to the
problem of incorporating prior information wheniesiting .

Assume the prior informatiofd = B, is derived from regression analysis
applied (perhaps by someone else) to some phenonuesrribed by the same
regression equation. However, we cannot be suretktlatwo phenomena are
described by exactly the same regression equatighvee do not know how
reliable the previous results are - the prior infation is uncertain. So, we must
decide whether to use the information. If yes, wesinthoose a proper estimator.
The usual least-squares estimaibt does not incorporate prior information and
S0, to use this information we need some alteraatihe statistical theory help us
here. We are presented with various Bayes, robage8and minimax estimators,
see e.g. [1, 7]. However, the optimal performanté¢he estimators depends on
the problem formulation and the description of thtér information. In actual
usage it is often difficult to decide what desddptof prior knowledge is most
suitable - the knowledge may have different naamé various origins. In papers
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[3, 4] we use computer simulations to compare verimethods for choosing
parameters of robust estimators incorporating tha mformation = 8, and we
introduce the notion ofndices of Uncertainty (IU) which role is to express
the uncertainty connected with the information. Tindices show how useful (or
misleading) is such information in terms of riskluetion.

Assuming different prior information about the reggion problem in this paper
we propose another description of its uncertainigt ghen focus on simulation
based methodology of determining indices of undeta As a result we obtain
some improved version of IU which appear to be vesll correlated with
the relative risk reduction gained by the estimmtbased on the information.
In our simulations the prior information is generhialong with the observations
for regression analysis. All other characteristitgxamined models are randomly
changed as well. Consequently we study the perfocsaf considered estimators
for thousands data sets.

1. Problem statement and notation

In what follows the model used to obtain the piimiormation is called the
previous model. The model to be examined is calleddireent model. In various
symbols lower indicep andc point out what model are a given quantities from.
For instance symbolb,, andb. denote the least-squares estimates of the true
parameterg,, . of the previous and current models, respectivglandS. denote
the estimates of the standard deviations of randistarbances for each model.

Now, let us consider the following class of linestimators:

bean(Y) = CADXTZY + CQ,2)A™S (1)

where CA,X) = (X'ZX+A™)™

Estimators having such a structure arise as sokitio some problems of Bayes
estimation. The value af may be thought of as a prior guessflprvhile a matrix
A reflects our uncertainty connected with the gu&ssmake use of the estimators
given by (1) we must specify the parametérd ) and usually it is not clear how
to do it. Most easy case is connected with the imar Theory of so called
empirical (or feasible) generalized least squarssmation provide us with
methods of estimating the covariance ma®ixThe computer simulations also
show that the intuitive method of determining thargmeterf as b, is quite
satisfactory, see [3]. However, the most confugomt is how to determine the
matrix A describing our uncertainty connected with the mpimdormationf8 = b,
And that is the problem we consider in the papenr. €&cond aim is to answer the
question whether or not the obtained estimatgks) is in a given situation better
than
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the usualS - estimator. How can we know it? This questiordie#o the notion
of an index of uncertainty.

2. Description of the uncertainty

As we have mentioned above, the matixin (1) reflects our uncertainty
connected with the informatio = b,. For any diagonal positively definité&xk)
matrix A the greater are the diagonal elements, the great¢he region in
a k-dimensional parameter space in which the estimatgrs) has smaller risk
function than the estimatds™>. The region is called aimmprovement region.
On the other hand it is well known that the greasetheimprovement region
the smaller is the risk reduction, for more detag® e.g. [6, 7]. Thus it is very
important to determine the matdxproperly.

For a given loss functiob(.,.) an improvement gained by any given estimator
with respect to the estimat®> can be measured bysgmmetric relative loss
reduction index given by

LR(b) = LB.0) ~L(B.D)
L(B.b™) + L(p.b)

A justification for such a formula can be found®n 7].
In this paper we examine the case where the matiscdefined as diagonal one

with the elementg; :tf, wheret; :M. Hereby; is thei-th component of
Cl
b, and § is the standard error dfy. We denote this matrix by*. For con-
venience, the estimatobg » ) with & = b,, A = A* and X estimated as usually in
the empirical generalized LS method will be denoc#esh*. It is obvious that
sometimes the estimator is better théT) sometimes not. So it would be desirable
to obtain a quantity which would show us whethenairthe usage of the estimator
b* is profitable or, in other words, whether the prioformation is useful or
misleading. Such an indicator is called an indexreertainty. More precisely, an
index of uncertainty is an arbitrary quantity which has high negatieerelation
with the value of a risk reduction gained by thénestorb*.
Now we are to choose quantities which would pogsiiflect the uncertainty
understood as described above. It is quite cleatr tthe information is the more
profitable the less trustful are our current estesaon one hand and, on the other
hand, the more trustful are the previous ones.
Given the data, the tool of least squares can hq@oged. However how trustful
the results are depends on the data at hand asdshguantities which potentially
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reflects our uncertainty of prior information wensider the following well known
characteristics of both the data and the model:

- R, Rf) - multiple coefficients of determination for thercent and previous
model, respectively,

_ 1
- StatisticsT =— ) t,
i

- CN, CN, - condition numbers of the matrices of observatioh explanatory
variables for the current and previous model. Let remember that the

condition number of any ngk) matrix X is given by CN =@, with
min
/]maxi/]min

being the maximal and minimal singular value of hatrix (X™ X)™, see [1],

- df;, df, - degrees of freedom for the current and previowslel, respecti-
vely.

With the help of computer simulations we verifysthdea and choose the most

useful index IU.

3. Description of simulations

The simulations are based on two procedufiamgle Regression Smulation
and Main Smulation. All procedures are programmed using Mathematica 4
software.

Single Regression Simulation Procedure (SRSP)

The input for this procedure consists of the masX,, X. of the observations
of explanatory variables for both models, the tragression parametefs, Bc
(possibly different), the distributions &, and Z.. During SRSP the dependent
variables)Y, Y. are generated, each according to the appropriatelmThe prior
informationb,, S, S, i = 1,...,k is generated as well. Then the valbé¥) of all
estimatord under consideration are computed as web.asthe value ob"S, For
each considered estimatowe record a value of relative loss reductiddalong
with many other characteristics of data and theesgjon problem, among them

the values of the quantities stated previously,Rg RZ, T, CN,, CN,, df, df,.

Main Simulation Procedure (MSP)

An input for this procedure consists of the disttibns for Z,, Z. (in our
research the distributions were normal or uniforfs) a first step of this procedure
we randomly generate the quantities which form apui for SESP i.e.:
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dimensionsk, the numbers of observationg n., matricesX,, X, vectorsf,, ..
The regression paramet; is obtained as a random transformation Bf
reflecting the fact that the investigated model rhaydifferent from the previous
one. These generated quantities remain unchangedgda singleMSP. As a
second step oMSP we execute single regression simulation procedisgrémes
and
record average values for all the quantities cosgbut

With the help of presented above procedures we latmwver a million
regression settings. For each case the dimensioegoéssion parameter is drawn
from the set [3,...,15] and the degrees of freedbosen randomly between 3 and
200. The matriceX, and X, are also randomly chosen. All the matrices hawe on
constant column, what reflect the fact that we qenf regression analysis for

models with an intercept. Some other charactesisbic the generated data are
presented in Table 1.

Table 1
Location and dispersion characteristics of generatedata
R R? CN, CN, k Ne n,

Mean 0.77 0.75 1031 1050 8.9 80.7 81.3
Standard
Deviation 0.13 0.11 2311 2345 3.7 62 61
Min 0.25 0.25 1.27 1.2 3 6 6
Max 0.99 0.99 9993 9999 15 200 200
Lower 0.68 0.68 7.11 2.7 6 20 24
quartile
Median 0.76 0.75 23.9 6.06 9 62 68
Upper
quartile 0.87 0.81 191.9 32.6 12 136 135

4. Index of Uncertainty

Now our aim is to find indexU which will show how useful or misleading is
the prior information when it is incorporated integression analysis via the
estimatorb*. The index should be well correlated with the perfance of the
estimator in a sense we described previously.

To develop such a quantity we perform regressiarmmater estimation for
100 000 regression settings and then adopt standayession techniques to
obtain the model describing the relation betweenliR index and the quantities
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Rf, RZ T, CN,, CN,, df, df,. Because we need onbne quantity explaining

the behavior of LR we tried to build log-linear nedd Finally, dropping all
insignificant variables, we obtain a proposal faor ancertainty index in the

following form:
004 003
df
U, =2- CNe | [ &
CN; df,

To simplify the form of the index in next simulatiove examine also other form
of the index, among them the following:

CN 004
U, =2-| =<
CN;

N, df, 004
U,=2-| —<—*

CN, df,

df 005
U, =2- N, @
CN, df,

df 01
U, =2-| Ne St
CN, df,

In our simulation we consider a loss function gitgn

1 Kk
L@B.b) =D
i=1

A-h )
ﬂi‘ 2)

In Table 2 we show the values of the Pearson coioalzoefficientr between
LR(b*) calculated for such a loss and the values ofrgfuactionlU;, i = 1,...,5.

The coefficients are computed on the base of wiiaglen gathered during the
second part of our research and consisting of 25ré0ords. Because the number
of loopsNs was equal to 1 each record contairexct values of both. R andlU.

Table 2
Pearson correlation coefficients betweenexact value of LR and indexed U;,

Uy 1U, 1Us 1Uy 1Us
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0.56 0.63 0.64 0.63 0.62

We see that the correlation is very high.

In Table 3 we present the results obtained in th&ation where numbeNs of
loops in MSP was equal to 30. Thus the presented exsmlan be interpreted as
the measure of correlation betweeqpected value of LR and proposed indexes.
The coefficients are computed on the base of whata gathered during next part
of our research and consisting of another 25 500rds and thus they are based
on above 750 000 regression settings.

Table 3
Pearson correlation coefficients betweenexpected value of LR and indexed U;,
i=1,..,5Ns=230)
U, U, U, U, IUs
0.76 0.81 0.82 0.82 0.79

As we could expect the performance (expressedrinst®f an averageR) of the
estimatorb* demonstrates even higher correlation with the wahieindiceslU;
than in the previous case.

Because the performance depends upon the priomiaf@mn the results suggest
the indices could indicate how useful is the infation incorporated by the
estimator.

In view of Tables 2, 3 and 4 the functibd; seems to be best proposal for the
index of uncertainty because it demonstrates higretation with the performance
of the estimatob* and has simple and intuitive form. To emphasizeochwice we
denote the indelJ*.

Now, to study how the uncertainty incorporated ithe estimate depends on
the value ofilU* we compute and compare the average values oflhitland LR
obtained for ten classes of valuesliof. As limits of the classes we took deciles
of the observed values of the index. Table 4 prtsstie average values of badtR
andlU* for these classes.

Table 4
Average values oL R and |U* for classes determined by deciles datU*

Class oflU* Average value ofU* | Average value.R
0.36-0.70 0.618208 0.551724
0.70-0.79 0.750889 0.353421
0.79-0.86 0.824029 0.230933
0.86-0.93 0.894041 0.129576
0.93-0.98 0.956151 0.0139668
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0.98-1.00 0.99029 -0.0715046
1.00-1.03 1.01975 -0.118613
1.03+1.09 1.06464 -0.227802
1.09:1.15 1.11694 -0.338404
1.15:1.35 1.20802 -0.456357

One can notice that the correlation coefficientwasin the averages equals to
0.997! Similar results obtained for classes deteeghiby percentiles are presented
in Figure 1.

08 | .
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0.6 0.8 ° -,-.'l-.. 1.2 U

0.4 L
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Fig. 1. Average values @R andIU* for classes determined by percentilesdf

In this case the correlation coefficient betweandlierages equals to 0.993!

5. Final remarks

Based on computer simulations and assuming diffepeior knowledge we
obtain here new proposal for an uncertainty intldX The index differs from
the ones proposed in papers [6, 7]. The main diffee is that its value depends on
the condition number of the matri,. In many real world problems we are not
provided with such a knowledge. However if we haueh an information then
the proposed index is worth consideration becausghibits very good features.
Its correlation with the value of symmetric relatiloss reductiohR is amazingly
very high. Thus we can be almost sure answeringjtiestion whether we should
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choose the least square estimator or the estinraorporating prior information.
Moreover, we can also estimate how big loss rednatan be expected.

Is the proposed index the best possible? PerhapS\eoto not neither think that
there exists "the best" choice d§ and we are aware that computer simulations
can prove nothing. On the other hand we think thatindexIU* is really very
good and satisfactory proposition for an indicatbithe uncertainty of the prior
knowledge.

Concluding we should also stress that our resudteevebtained under the loss
given by (2) and when the distributions of disturbaes were normal or uniform.
We are sure however, that the proposed methodokagy,be used to determine
the form of the coefficient of uncertainty when tbiterion of performance is
given by other loss functions (e.g. quadratic ocliEean norm) as well as for
other than considered here distributions.
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