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Abstract. The paper is devoted to the problem of incorporating prior information in the 
regression estimation. In series of papers, see [3-6], we have proposed and analyzed some 
model of uncertainty which allow incorporating prior information along with its uncertainty 
via some Bayes estimators. We also introduced the notion of an Index of Uncertainty (IU) 
which indicate how useful the information and consequently the proposed estimators are. 
The results and methodology are summarized in [7]. Here, assuming different than in  
the mentioned papers prior knowledge about the regression problems, we propose a new 
description of uncertainty along with an index of uncertainty which was developed on  
the base of computer simulation. 

Introduction 

Consider the linear model Y = Xββββ + Z, where Y is a vector of observations  
of the dependent variable, X is a nonstochastic (n x k) matrix of the observations 
of explanatory variables, ββββ is a k-dimensional regression parameter (i.e. vector  
of unknown regression coefficients) and Z is an n-dimensional vector of random 
disturbances. Assume E(Y) = Xββββ, Cov(Y) = Σ. The paper is devoted to the  
problem of incorporating prior information when estimating ββββ. 

Assume the prior information β β β β = ββββp is derived from regression analysis  
applied (perhaps by someone else) to some phenomenon described by the same 
regression equation. However, we cannot be sure that the two phenomena are  
described by exactly the same regression equation and we do not know how  
reliable the previous results are - the prior information is uncertain. So, we must 
decide whether to use the information. If yes, we must choose a proper estimator. 
The usual least-squares estimator bLS does not incorporate prior information and 
so, to use this information we need some alternative - the statistical theory help us 
here. We are presented with various Bayes, robust Bayes and minimax estimators, 
see e.g. [1, 7]. However, the optimal performance of the estimators depends on  
the problem formulation and the description of the prior information. In actual 
usage it is often difficult to decide what description of prior knowledge is most 
suitable - the knowledge may have different nature and various origins. In papers 
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[3, 4] we use computer simulations to compare various methods for choosing  
parameters of robust estimators incorporating the prior information β β β β = ββββp and we 
introduce the notion of Indices of Uncertainty (IU) which role is to express  
the uncertainty connected with the information. The indices show how useful (or 
misleading) is such information in terms of risk reduction.  

Assuming different prior information about the regression problem in this paper 
we propose another description of its uncertainty and then focus on simulation 
based methodology of determining indices of uncertainty. As a result we obtain 
some improved version of IU which appear to be very well correlated with  
the relative risk reduction gained by the estimators based on the information.  
In our simulations the prior information is generated along with the observations 
for regression analysis. All other characteristics of examined models are randomly 
changed as well. Consequently we study the performance of considered estimators 
for thousands data sets. 

1. Problem statement and notation 

In what follows the model used to obtain the prior information is called the 
previous model. The model to be examined is called the current model. In various 
symbols lower indices p and c point out what model are a given quantities from. 
For instance symbols bp, and bc denote the least-squares estimates of the true  
parameters ββββp, ββββc of the previous and current models, respectively, Sp and Sc denote 
the estimates of the standard deviations of random disturbances for each model. 
Now, let us consider the following class of linear estimators: 

 b(ϑ,∆,Σ)(Y) = C(∆,Σ)XTΣ−1Y + C(∆,Σ)∆−1ϑ (1) 

where C(∆,Σ) = (XTΣ−1X+∆−1)−1. 
Estimators having such a structure arise as solutions to some problems of Bayes 

estimation. The value of ϑ may be thought of as a prior guess on ββββ, while a matrix 
∆ reflects our uncertainty connected with the guess. To make use of the estimators 
given by (1) we must specify the parameters (ϑ,∆,Σ) and usually it is not clear how 
to do it. Most easy case is connected with the matrix Σ. Theory of so called  
empirical (or feasible) generalized least squares estimation provide us with  
methods of estimating the covariance matrix Σ. The computer simulations also 
show that the intuitive method of determining the parameter ββββ as bp is quite 
satisfactory, see [3]. However, the most confusing point is how to determine the 
matrix ∆ describing our uncertainty connected with the prior information ββββ = bp. 
And that is the problem we consider in the paper. Our second aim is to answer the 
question whether or not the obtained estimator b(ϑ,∆,Σ) is in a given situation better 
than  
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the usual LS - estimator. How can we know it? This question leads to the notion  
of an index of uncertainty. 

2. Description of the uncertainty 

As we have mentioned above, the matrix ∆ in (1) reflects our uncertainty 
connected with the information ββββ = bp. For any diagonal positively definite (k×k)  
matrix ∆ the greater are the diagonal elements, the greater is the region in  
a k-dimensional parameter space in which the estimator b(ϑ,∆,Σ) has smaller risk 
function than the estimator bLS. The region is called an improvement region.  
On the other hand it is well known that the greater is the improvement region  
the smaller is the risk reduction, for more details see e.g. [6, 7]. Thus it is very 
important to determine the matrix ∆ properly. 

For a given loss function L(.,.) an improvement gained by any given estimator b 
with respect to the estimator bLS can be measured by a symmetric relative loss  
reduction index given by 
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A justification for such a formula can be found in [5, 7]. 
In this paper we examine the case where the matrix ∆ is defined as diagonal one 
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bp and Sci is the standard error of bci. We denote this matrix by ∆*. For con-
venience, the estimators b(ϑ,∆,Σ) with ϑ = bp, ∆ = ∆* and Σ estimated as usually in 
the empirical generalized LS method will be denoted as b* . It is obvious that 
sometimes the estimator is better than bLS, sometimes not. So it would be desirable 
to obtain a quantity which would show us whether or not the usage of the estimator 
b* is profitable or, in other words, whether the prior information is useful or  
misleading.  Such an indicator is called an index of uncertainty. More precisely, an 
index of uncertainty is an arbitrary quantity which has high negative correlation 
with the value of a risk reduction gained by the estimator b* .  
Now we are to choose quantities which would possibly reflect the uncertainty  
understood as described above. It is quite clear that the information is the more 
profitable the less trustful are our current estimates on one hand and, on the other 
hand, the more trustful are the previous ones.  
Given the data, the tool of least squares can be employed. However how trustful  
the results are depends on the data at hand and thus as quantities which potentially 
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reflects our uncertainty of prior information we consider the following well known 
characteristics of both the data and the model:  

- ,2
cR  2

pR  - multiple coefficients of determination for the current and previous 

model, respectively, 

- Statistics ,
1
∑=

i
itk

T  

- CNc, CNp - condition numbers of the matrices of observations of explanatory 
variables for the current and previous model. Let us remember that the 

condition number of any  (n×k) matrix X is given by ,
min

max

λ
λ=CN   with 

minmax, λλ   

being the maximal and minimal singular value of the matrix ,)XX( 1−T  see [1], 

- dfc, dfp - degrees of freedom for the current and previous model, respecti- 
vely. 

With the help of computer simulations we verify this idea and choose the most 
useful index IU. 

3. Description of simulations 

The simulations are based on two procedures: Single Regression Simulation 
and Main Simulation. All procedures are programmed using Mathematica 4.0 
software. 

Single Regression Simulation Procedure (SRSP) 

The input for this procedure consists of the matrices Xp, Xc of the observations 
of explanatory variables for both models, the true regression parameters ββββp, ββββc 
(possibly different), the distributions of Zp and Zc. During SRSP the dependent 
variables, Yp, Yc are generated, each according to the appropriate model. The prior 
information bp, Sp, Spi, i = 1,..., k is generated as well. Then the values b(Yc) of all 
estimators b under consideration are computed as well as bc - the value of bLS. For 
each considered estimator b we record a value of relative loss reduction LR along 
with many other characteristics of data and the regression problem, among them 

the values of the quantities stated previously, i.e. ,2
cR  ,2

pR  T, CNc, CNp, dfc, dfp. 

Main Simulation Procedure (MSP) 

An input for this procedure consists of the distributions for Zp, Zc (in our  
research the distributions were normal or uniform). As a first step of this procedure 
we randomly generate the quantities which form an input for SESP i.e.: 
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dimensions k, the numbers of observations np, nc, matrices Xp, Xc, vectors ββββp, ββββc.  
The regression parameter ββββc is obtained as a random transformation of ββββp, 
reflecting the fact that the investigated model may be different from the previous 
one. These generated quantities remain unchanged during a single MSP. As a 
second step of MSP we execute single regression simulation procedure Ns times 
and  
record average values for all the quantities computed. 

With the help of presented above procedures we simulate over a million 
regression settings. For each case the dimension of regression parameter is drawn 
from the set [3,...,15] and the degrees of freedom chosen randomly between 3 and 
200. The matrices Xp and Xc are also randomly chosen. All the matrices have one 
constant column, what reflect the fact that we perform regression analysis for 
models with an intercept. Some other characteristics of the generated data are 
presented in Table 1. 

 
Table 1 

Location and dispersion characteristics of generated data 

 2
cR  2

pR  cCN  pCN  k cn  pn  

Mean 0.77 0.75 1031 1050 8.9 80.7 81.3 

Standard        

Deviation 0.13 0.11 2311 2345 3.7 62 61 

Min 0.25 0.25 1.27 1.2 3 6 6 

Max 0.99 0.99 9993 9999 15 200 200 

Lower 0.68 0.68 7.11 2.7 6 20 24 

quartile        

Median 0.76 0.75 23.9 6.06 9 62 68 

Upper        

quartile 0.87 0.81 191.9 32.6 12 136 135 

4. Index of Uncertainty 

Now our aim is to find index IU which will show how useful or misleading is 
the prior information when it is incorporated into regression analysis via the 
estimator b* . The index should be well correlated with the performance of the 
estimator in a sense we described previously. 

To develop such a quantity we perform regression parameter estimation for 
100 000 regression settings and then adopt standard regression techniques to  
obtain the model describing the relation between the LR index and the quantities 
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,2
cR  ,2

pR  T, CNc, CNp, dfc, dfp. Because we need only one quantity explaining  

the behavior of LR we tried to build log-linear model. Finally, dropping all 
insignificant variables, we obtain a proposal for an uncertainty index in the 
following form: 
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To simplify the form of the index in next simulation we examine also other form 
of the index, among them the following: 
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In our simulation we consider a loss function given by 
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In Table 2 we show the values of the Pearson correlation coefficient r between 
LR(b* ) calculated for such a loss and the values of given function IUi, i = 1,…,5. 
The coefficients are computed on the base of whole data gathered during the 
second part of our research and consisting of 25 500 records. Because the number 
of loops Ns was equal to 1 each record contains exact values of both LR and IU. 
 

Table 2 
Pearson correlation coefficients r between exact value of LR and indexes IUi,  

i = 1,…,5 (Ns = 1) 

IU1 IU2 IU3 IU4 IU5 
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0.56 0.63 0.64 0.63 0.62 

 
We see that the correlation is very high. 
In Table 3 we present the results obtained in the situation where number Ns of 
loops in MSP was equal to 30. Thus the presented numbers r can be interpreted as 
the measure of correlation between expected value of LR and proposed indexes. 
The coefficients are computed on the base of whole data gathered during next part 
of our research and consisting of another 25 500 records and thus they are based 
on above 750 000 regression settings. 

Table 3 
Pearson correlation coefficients r between expected value of LR and indexes IUi,  

i = 1,…,5 (Ns = 30) 

IU1 IU2 IU3 IU4 IU5 

0.76 0.81 0.82 0.82 0.79 

 
As we could expect the performance (expressed in terms of an average LR) of the 
estimator b* demonstrates even higher correlation with the values of indices IUi 
than in the previous case. 
Because the performance depends upon the prior information the results suggest 
the indices could indicate how useful is the information incorporated by the 
estimator. 
In view of Tables 2, 3 and 4 the function IU3 seems to be best proposal for the 
index of uncertainty because it demonstrates high correlation with the performance 
of the estimator b* and has simple and intuitive form. To emphasize our choice we 
denote the index IU*. 
Now, to study how the uncertainty incorporated into the estimate depends on  
the value of IU* we compute and compare the average values of both IU* and LR 
obtained for ten classes of values of IU*. As limits of the classes we took deciles 
of the observed values of the index. Table 4 presents the average values of both LR 
and IU* for these classes. 
 

Table 4 
Average values of LR and IU* for classes determined by deciles of IU* 

 Class of IU* Average value of IU* Average value LR 

0.36÷0.70 0.618208 0.551724 

0.70÷0.79 0.750889 0.353421 

0.79÷0.86 0.824029 0.230933 

0.86÷0.93 0.894041 0.129576 

0.93÷0.98 0.956151 0.0139668 
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0.98÷1.00 0.99029 −0.0715046 

1.00÷1.03 1.01975 −0.118613 

1.03÷1.09 1.06464 −0.227802 

1.09÷1.15 1.11694 −0.338404 

1.15÷1.35 1.20802 −0.456357 

 
One can notice that the correlation coefficient between the averages equals to 
0.997! Similar results obtained for classes determined by percentiles are presented 
in Figure 1. 
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Fig. 1. Average values of LR and IU* for classes determined by percentiles of IU* 

In this case the correlation coefficient between the averages equals to 0.993! 

5. Final remarks 

Based on computer simulations and assuming different prior knowledge we  
obtain here new proposal for an uncertainty index IU*. The index differs from  
the ones proposed in papers [6, 7]. The main difference is that its value depends on 
the condition number of the matrix Xp. In many real world problems we are not 
provided with such a knowledge. However if we have such an information then  
the proposed index is worth consideration because it exhibits very good features. 
Its correlation with the value of symmetric relative loss reduction LR is amazingly 
very high. Thus we can be almost sure answering the question whether we should 
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choose the least square estimator or the estimator incorporating prior information. 
Moreover, we can also estimate how big loss reduction can be expected. 
Is the proposed index the best possible? Perhaps not. We do not neither think that 
there exists "the best" choice of IU and we are aware that computer simulations 
can prove nothing. On the other hand we think that the index IU* is really very 
good and satisfactory proposition for an indicator of the uncertainty of the prior 
knowledge. 

Concluding we should also stress that our results were obtained under the loss 
given by (2) and when the distributions of disturbances were normal or uniform. 
We are sure however, that the proposed methodology, can be used to determine  
the form of the coefficient of uncertainty when the criterion of performance is 
given by other loss functions (e.g. quadratic or Euclidean norm) as well as for 
other than considered here distributions. 
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