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Abstract. In this paper we present an application of the Euler's method to the numerical 
solution of fractional ordinary differential equations. These equations include both a classi-
cal differential operator of integer order and the fractional one defined in the Caputo sense. 

Our previous work was limited to the order of fractional derivative )0,1α ∈ . This study 

considers numerical schemes for higher orders of a fractional derivative. We then compare 
our schemes with analytical solutions in order to show their good numerical precision. 

Introduction 

A contemporary mathematical modeling uses fractional ordinary differential 
equations as an alternative approach to the ordinary differential equations of inte-
ger order. Here we start with a class of ordinary differential equations defined as: 

 ( ) ( ) ( ) ( ) ( )( )11, , ,..., , ,..., 0mpf x y x D y x D y x D y x D y xαα =    (1)  

where ( )y x  is a continuous function being a solution of above equation, 

( ) ( )1 ,..., pD y x D y x  are derivatives of integer order and ( ) ( )1 ,..., mD y x D y xαα  are 

fractional derivatives of real orders 1,..., m Rα α ∈ . It should be noted that an ana-

lytical solution of such equation is limited to its linear form and includes some 
special functions.  However, numerical techniques presented in literature [1-5] 
have also many disadvantages, i.e. introduction of the initial conditions included in 
the Riemann-Liouville derivative [8], the unreasonable assumption that a method 
applied to a single term equation is proper for solving a multi-term equation [3, 7] 
etc. 

In our work [8] we introduced a novel numerical technique in order to omit 
these disadvantages. However the technique has considered six types of equations 
in which the integer order belonged to the range { }0,1,2p ∈  and the fractional one 
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was )0,1α ∈ .  We also checked three numerical techniques applied to solution of 

Eqn. (1) - the Adams method [9], the Gear's method [10] and the Euler's method 
[9] - and four discrete forms of the left-side Caputo derivative. According to [11] 
we define such operator as: 
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where [ ] 1n α= +  and [⋅] indicates an integer part of a real number. In literature  

[2, 6, 12] one may find another discrete forms of the Caputo derivative (2). 
To extend our considerations we will focus on ordinary differential equations 

with a mixture of integer and fractional derivatives where the real order α  of  

a fractional derivative is greater than )0,1α ∈ . We then will show and test  

numerical algorithms adopted to fractional differential equations where real order 

of the fractional derivative satisfies the range )1,2α ∈ . 

1. Problem statement 

Here we focus on the following types of equations: 

• p n>  for 3p = , )1,2α ∈ , 2n =  

 ( ) ( )
0

3 0C
x xD y x D y xαλ+ =   (3) 

• p n=  for 2p = , )1,2α ∈ , 2n =  

 ( ) ( )
0

2 0C
x xD y x D y xαλ+ =   (4) 

It should be noted that the function ( )y x  being solution of such equations belongs 

to the class of continuous functions. To solve above equations numerically we use 
the Euler's method where a discrete form of the Caputo derivative (2) is proposed. 
In the next section we show a way how to discretize this derivative. 

1.1. Analytical solution  

In order to compare numerical results we solve the above system of equations 
analytically. In literature [12-14] one may find a way how to generate the analyti-
cal solution for some types of fractional differential equations. Here we can apply 
the Laplace transform [15] that to solve the equations (3) and (4) respectivelly. 
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Notice that the classical transform of any differential operator of integer order 
m N∈  has the following form: 
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However the Laplace transform of the Caputo derivative (2) is: 
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Assuming initial conditions as: 

 ( ) ( ) ( )1 2
0 0 0 0 0 0, ' , "y x y D y x y D y x y= = =  (7) 

and using the Laplace transform and retransforming results we obtain analytical 
solution of Eqn. (3) in the following form: 
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where ( ),E xα
α β λ−  denotes the Mittag-Leffler function [14] defined as: 
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and ( ) ( ) ( ) ( )1 2
, ,,E x E xα α

α β α βλ λ− −  are first and second derivatives of the Mittag- 

-Leffler function defined as: 
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Solving analytically Eqn. (4), where initial conditions: 

 ( ) ( )1
0 0 0 0, 'y x y D y x y= =   (12) 

are included, we have: 

 
( ) ( )
( )

0 0 0

1
0

'

'

y x y y x x

D x y

= + −

=
  (13) 

It should be noted that above solutions arise from our assumption that the function 
( )y x  belongs to a class of continuous functions. 

1.2. Numerical technique 

As we remarked before there are many numerical approaches which one uses 
with their advantages and disadvantages for solution of fractional differential 
equations. We also found in literature [2, 6, 12] many discrete forms of the Caputo 
derivative (2). On the base of our previous experience [8] we decided to apply  
the Euler's method as a method solving ordinary differential equations. Moreover 
we choosen the left-side form as a discrete form of the Caputo derivative (2). 

Here we present the discrete form and two algorithms.  Let us consider an inde-

pendent value x which occurs on a length of calculations 0, Nx x , where x0 and xN 

are the beginning and the end of the range respectivelly. We divided the range on 
the N-parts and we obtain a homogeneous grid 0 1 ... Nx x x< < < . Then the Caputo 

derivative (2) has the following discrete form: 

 ( ) ( ) ( ) ( )
0 1 1

1

1

1

N
n nC

x x k N k N k
k

D y x B x x x x
n

α αα

α
− −

− −
=

 ≅ − − −
 Γ − + ∑  (14) 

where 1,k kx x x−∈  and ( )1 1
n

k kD y x B− −= . 

The Euler's method [9] is a forward one-step method. Using this method one may 
obtain the numerical scheme for an ordinary differential equation of the first order 
as: 

 ( )1 1 1, , 1,...,k k k ky y hf x y k N− − −= + =   (15) 

In this point of our considerations we propose two algorithms which solve the 
above differential equations. 

Algorithm 1  
Eqn. (3) with initial conditions (7) is solved by the following algorithm 
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step 1 Preparation of necessary data: initial conditions, the fractional order 

)1,2α ∈ , the total length of calculations 0, Nx x x∈  and the step of calculations 

h. 
step 2 Governing calculations: let 1,...,k N=  then: 
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Algorithm 2  
Considering Eqn. (4) with initial conditions (12) we obtain the following algorithm 
step 1 Preparation of necessary data: initial conditions, the fractional order 

)1,2α ∈ , the total length of calculations 0, Nx x x∈ , the step of calculations h 

and additionally 2
0 0D y = . 

step 2 Governing calculations: let 1,...,k N=  then: 
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In summary we proposed some numerical schemes suitable for two types of frac-
tional differential equations (3) and (4). 

2. Results and discussion 

In this section we illustrate how algorithms operate in practice. First we com-
pare numerical results with the analytical ones. Let us to solve Eqn. (3) where 

1λ =  and initial conditions are determined as: 

 1)0(,1)0()0( 21 === yDyDy   (18) 

We use algorithm 1 in order to solve numerically Eqn. (3) with initial conditions 
(18). Notice that this equation has analytical solution presented by formula (8).  
Tables 1 and 2 show analytical values (8) at assumed points and the difference 
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between the numerical and analytical results being  measure of an absolute error. 
The tables differ by the assumed step of calculations. 
 

Table 1 
Analytical results of Eqn. (3) with initial condition (18) and errors generated  

by the Euler’s method for h = 0.01 

 y(1) y(4) y(6) y(8) y(10) 

α = 1.1 

Analytical 2.4535821 6.8069550 7.6912657 10.2724904 12.7546663 

Error 4.11e-3 2.46e-3 1.10e-3 2.75e-3 9.38e-4 

α = 1.5 

Analytical 2.4218511 7.4020740 9.8036872 12.1712704 14.5673990 

Error 3.60e-3 1.56e-3 8.79e-4 1.00e-3 9.21e-4 

α = 1.9 

Analytical 2.3795378 7.9058846 11.5808691 15.1697472 18.7034378 

Error 2.48e-3 2.20e-3 2.17e-3 2.19e-3 2.20e-3 

 
Table 2 

Analytical results of Eqn. (3) with initial condition (18) and errors generated  
by the Euler’s method for h = 0.005 

 y(1) y(4) y(6) y(8) y(10) 

α = 1.1 

Analytical 2.4535821 6.8069550 7.6912657 10.2724904 12.7546663 

Error 2.05e-3 1.23e-3 5.52e-4 1.39e-3 4.73e-4 

α = 1.5 

Analytical 2.4218511 7.4020740 9.8036872 12.1712704 14.5673990 

Error 1.81e-3 7.79e-4 4.30e-4 5.03e-4 4.62e-4 

α = 1.9 

Analytical 2.3795378 7.9058846 11.5808691 15.1697472 18.7034378 

Error 1.27e-3 1.17e-3 1.15e-3 1.15e-3 1.15e-3 

 
Analyzing above tables we can observe that errors generated by the algorithm are 
independent of the point x taken from the range 10,0  where the function value  

( )y x  is calculated.  It should be noted that twofold decrease of the calculation 

step h influences linearly to a decrease of the error. 
Let us take into consideration Eqn. (4), where 1λ =  and initial conditions are: 

 1)0()0( 1 == yDy   (19) 

Notice that the analytical solution (13) for such equation is independent on the 
parameter α. Using algorithm 2 we can observe that the numerical solution does 
not generate any errors. Therefore we omit tables and show results graphically. 
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Figures 1 and 2 present some comparison between analytical and numerical  
results. 
 

 

Fig. 1. Comparison of analytical and numerical results of the function ( )y x  being the solu-

tion of Eqn. (4) with initial conditions (19) 

 

Fig. 2. Comparison of analytical and numerical results of the first derivative ( )1D y x   being 

the solution of Eqn. (4) with initial conditions (19) 

Analyzing such figures we can see that numerical results exactly fit the analytical 
one. 

The last case concerns the analytical solution (8) of Eqn. (3) with initial condi-
tions (18). Figures 3, 4 and 5 show solutions for different values of the parame-
ter α. 

Analyzing results presented by Figure 3 we can observe interesting behaviour 
of the function ( )y x  over the independent value x for different values of the pa-

rameter α. When the parameter  α  tends to two then the function behaves almost 
linearly. 
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Fig. 3. Analytical results ( )y x  of Eqn. (3) with initial conditions (18) being dependent on the 

parameter α 

 
Fig. 4. Analytical results ( )1D y x  of Eqn. (3) with initial conditions (18) for different values 

of the parameter α 

 
Fig. 5. Analytical results ( )2D y x  of Eqn. (3) with initial conditions (18) for different values 

of the parameter α 



Using the Euler's method to solve ordinary differential equations of higher order with ... 39

Summarising our considerations we proved that the Euler's method is good for  
the numerical solution of ordinary differential equations where an arbitrary posi-
tive value of the Caputo derivative is assumed. 

Conclusions 

In this paper we presented an extension of numerical algorithms to solve ordi-
nary differential equations for arbitrary positive values of the real order α of  
the Caputo fractional derivative. On the base of previous results [8] we modified 
the discrete form of the Caputo derivative being dependent on a range of  
the parameter α. When the range increases then a number of discrete equations 
occuring in the algorithm is increases too. Taking into consideration both the com-
plexity of numerical schemes and the errors generated by the numerical method we 
recommend the Euler's method as a good method for numerical treatment of frac-
tional ordinary differential equations. 
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