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Abstract. In this paper we present an application of theeEsllmethod to the numerical
solution of fractional ordinary differential equatis. These equations include both a classi-
cal differential operator of integer order and fiteetional one defined in the Caputo sense.

Our previous work was limited to the order of fianal derivativeaD(O,l). This study

considers numerical schemes for higher ordersfedcional derivative. We then compare
our schemes with analytical solutions in orderhove their good numerical precision.

Introduction

A contemporary mathematical modeling uses fractimwdinary differential
equations as an alternative approach to the ondidiffierential equations of inte-
ger order. Here we start with a class of ordinaffgrential equations defined as:

f(x,y(x),Dly(x),...,Dpy(x) Dey(x) ,...D"my(x))z ( (1)

where y(x) is a continuous function being a solution of abcguation,
D'y(x),....Dy(x) are derivatives of integer order amf:y(x),....Dy(x) are
fractional derivatives of real orders,...a,, OR. It should be noted that an ana-

lytical solution of such equation is limited to iisear form and includes some
special functions. However, numerical techniquessented in literature [1-5]
have also many disadvantages, i.e. introductighefnitial conditions included in
the Riemann-Liouville derivative [8], the unreasblegaassumption that a method
applied to a single term equation is proper foviegl a multi-term equation [3, 7]
etc.

In our work [8] we introduced a novel numerical heirjue in order to omit
these disadvantages. However the technique hagdeoed six types of equations

in which the integer order belonged to the rarp;@{O,l,% and the fractional one
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was aD(O,l). We also checked three numerical techniques egbpdi solution of

Egn. (1) - the Adams method [9], the Gear's mefi@d and the Euler's method
[9] - and four discrete forms of the left-side Capderivative. According to [11]
we define such operator as:

x 0
a 1 y T
D7y (x) = J _T( ) car @)
where n = [a] +1 and [Jlindicates an integer part of a real number. teréiture

[2, 6, 12] one may find another discrete formshaf Caputo derivative (2).
To extend our considerations we will focus on ocadyndifferential equations
with a mixture of integer and fractional derivasvevhere the real ordesr of

a fractional derivative is greater thamD(O,l). We then will show and test

numerical algorithms adopted to fractional diffar@hequations where real order
of the fractional derivative satisfies the range(1,2).

1. Problem statement

Here we focus on the following types of equations:
« p>nfor p=3, aD(l,Z), n=2

D%y(x)+A,.Dfy(x) =0 (3)
« p=nfor p=2, a0(1,2), n=2
D?y(x)+4,SD{y(x) =0 4

It should be noted that the functior(x) being solution of such equations belongs

to the class of continuous functions. To solve &beguations numerically we use
the Euler's method where a discrete form of theu@agerivative (2) is proposed.
In the next section we show a way how to discretire derivative.

1.1. Analytical solution

In order to compare numerical results we solveaheve system of equations
analytically. In literature [12-14] one may findnay how to generate the analyti-
cal solution for some types of fractional differi@htequations. Here we can apply
the Laplace transform [15] that to solve the eaqurei(3) and (4) respectivelly.
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Notice that the classical transform of any différ@noperator of integer order
mON has the following form:

m-1

([D7y(x)]=s7F (s) -2 D™y (x) ©)
However the Laplace transform of the Caputo dereal?) is:

[0y (0)]=¢F (9 -3 D"y (x) ©
Assuming initial conditions as:

¥(%) = Yor D'Y(%o) =¥'0, D?Y(X) =¥ (7)

and using the Laplace transform and retransformésmilts we obtain analytical
solution of Egn. (3) in the following form:

V(X) = Yo +¥'o(X=%0) +Y"o(X %) Eqp { A(x %977)
D*(X) = Yo+ 2y "o (X =X) Eay o A(x %)) +
+0(8=a) (x =) L o A (x %)) ®)
D?(x) =2y", E}“(—A(x—x ) )+4y"0(3 ~a)(x %o ES, s( 7 (x x c)H) *
+y"y(3-a) (x %) ED) o (x %))

whereE, , (-1x") denotes the Mittag-Leffler function [14] definest a

9)

and EY) (-Ax"), EX) (-Ax") are first and second derivatives of the Mittag-

-Leffler function defined as:

@O (_yva) = 0 ( A)I ixm_l
Eaﬂ( AX )_; r(a|+ﬂ) (10)
E? (-Ax) =Y. (-4) i (@i -1)x" .
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Solving analytically Eqn. (4), where initial condns:
¥(%) = Yo D'Y(X,) =¥ (12)
are included, we have:

y(X) =Y t ylo(x _Xo)
. . (13)
D' (x) =y
It should be noted that above solutions arise fommassumption that the function
y(x) belongs to a class of continuous functions.

1.2. Numerical technique

As we remarked before there are many numericalcages which one uses
with their advantages and disadvantages for soluab fractional differential
equations. We also found in literature [2, 6, 12jnmdiscrete forms of the Caputo
derivative (2). On the base of our previous expexe[8] we decided to apply
the Euler's method as a method solving ordinarential equations. Moreover
we choosen the left-side form as a discrete forth@iCaputo derivative (2).

Here we present the discrete form and two algosthiret us consider an inde-

pendent valu& which occurs on a length of calculatiofb%,x@, wherex, andxy

are the beginning and the end of the range resedlgtiWe divided the range on
the N-parts and we obtain a homogeneous gyg& x, <...<X, . Then the Caputo

derivative (2) has the following discrete form:

SDIY(X) Do B (6 %)™ = (= %) @)

1 N
rn-a+1) &

1

where xO(x,, %) andD"y(x,)=B,_,.

The Euler's method [9] is a forward one-step mettixing this method one may
obtain the numerical scheme for an ordinary diffiéied equation of the first order
as:

Yi = Y +hE (Xk—17 yk—l)’ k=1..N (15)

In this point of our considerations we propose @gorithms which solve the
above differential equations.

Algorithm 1
Eqgn. (3) with initial conditions (7) is solved byet following algorithm
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step 1 Preparation of necessary data: initial conditiotiee fractional order
aD(l, 2), the total length of calculations[{x,,x, ) and the step of calculations

h.
step 2Governing calculations: ldt=1,...,N then:

1 k 2-a 2-a
Dy, =———> D%, _ [ -x_) —(x -x J
X xyk F(S—a’); ykl (Xk 11) (Xk ])
Yi = Yia +hDY, 4 (16)
D'y, = D', +hD%,,
D%y, =D?%,, —hA SDJy,
Algorithm 2

Considering Eqn. (4) with initial conditions (12ewbtain the following algorithm
step 1 Preparation of necessary data: initial conditiotiee fractional order

aD(l, 2), the total length of calculationg0(x,, X, ), the step of calculatioris

and additionallyD?y, =0.
step 2Governing calculations: lét =1,...,N then:

k
« D Vi =ﬁ; Dzyk—l|:(xk _Xj—1)2 ’ _(Xk _Xi)HJ
Yi = Yia +hD'y, (17)
D'y, =D'y,, —h4 x(O:nyk

D?y, =-A. DY,

In summary we proposed some numerical schemeshuitar two types of frac-
tional differential equations (3) and (4).

2. Results and discussion

In this section we illustrate how algorithms operat practice. First we com-
pare numerical results with the analytical ones W% to solve Egn. (3) where
A =1 and initial conditions are determined as:

y(0) =D'y(0) =1, D?y(0) =1 (18)

We use algorithm 1 in order to solve numericalynE(B) with initial conditions
(18). Notice that this equation has analytical 8oftu presented by formula (8).
Tables 1 and 2 show analytical values (8) at asdupaénts and the difference
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between the numerical and analytical results bemmgasure of an absolute error.
The tables differ by the assumed step of calculatio

Table 1
Analytical results of Eqgn. (3) with initial condition (18) and errors generated
by the Euler's method for h = 0.01
| v | yva | ye [ y® |  ya0
a=1.1
Analytical 2.4535821 6.8069550 7.6912657 10.272490412.7546663
Error 4.11e-3 2.46e-3 1.10e-3 2.75e-3 9.38e-4
a=15
Analytical 24218511 7.4020740 9.8036872 12.171270414.5673990
Error 3.60e-3 1.56e-3 8.79e-4 1.00e-3 9.21e-4
a=1.9
Analytical 2.3795378 7.9058846 11.5808691 15.169747 18.7034378
Error 2.48e-3 2.20e-3 2.17e-3 2.19e-3 2.20e-3
Table 2
Analytical results of Eqgn. (3) with initial condition (18) and errors generated
by the Euler’'s method for h = 0.005
| v [ yo | ye | y® [  yao)
a=1.1
Analytical 2.4535821 6.8069550 7.6912657 10.272490412.7546663
Error 2.05e-3 1.23e-3 5.52e-4 1.39%e-3 4.73e-4
a=15
Analytical 24218511 7.4020740 9.8036872 12.171270414.5673990
Error 1.81e-3 7.79e-4 4.30e-4 5.03e-4 4.62e-4
a=1.9
Analytical 2.3795378 7.9058846 11.5808691 15.169747 18.7034378
Error 1.27e-3 1.17e-3 1.15e-3 1.15e-3 1.15e-3

Analyzing above tables we can observe that errereited by the algorithm are
independent of the pointtaken from the rangéO;LO) where the function value
y(x) is calculated. It should be noted that twofoldréase of the calculation

steph influences linearly to a decrease of the error.
Let us take into consideration Eqgn. (4), whdrel and initial conditions are:

y(0)=D'y(0) =1 (19)

Notice that the analytical solution (13) for sudjuation is independent on the
parametern. Using algorithm 2 we can observe that the nuraésolution does
not generate any errors. Therefore we omit tabfes show results graphically.
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Figures 1 and 2 present some comparison betweelytiaab and numerical
results.
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Fig. 1. Comparison of analytical and numerical rssof the functiony(x) being the solu-
tion of Egn. (4) with initial conditions (19)
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Fig. 2. Comparison of analytical and numerical ressaof the first derivativeDly(x) being
the solution of Egn. (4) with initial conditionsq)L

Analyzing such figures we can see that numericslllte exactly fit the analytical
one.

The last case concerns the analytical solutior{&qn. (3) with initial condi-

tions (18). Figures 3, 4 and 5 show solutions fiéfiecent values of the parame-
tera.

Analyzing results presented by Figure 3 we can miesmteresting behaviour
of the function y(x) over the independent valxefor different values of the pa-

rametero. When the parametes tends to two then the function behaves almost
linearly.
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Fig. 3. Analytical resultw(x) of Egn. (3) with initial conditions (18) being depdent on the
parameter.
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Fig. 4. Analytical resultley(x) of Egn. (3) with initial conditions (18) for diffent values
of the parameter
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Fig. 5. Analytical resultsDzy(x) of Egn. (3) with initial conditions (18) for diffent values
of the parameter
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Summarising our considerations we proved that tbkeris method is good for
the numerical solution of ordinary differential egions where an arbitrary posi-
tive value of the Caputo derivative is assumed.

Conclusions

In this paper we presented an extension of numealgarithms to solve ordi-
nary differential equations for arbitrary positivalues of the real ordex of
the Caputo fractional derivative. On the base eljmus results [8] we modified
the discrete form of the Caputo derivative beingeatwlent on a range of
the parameten. When the range increases then a number of diseeiations
occuring in the algorithm is increases too. Takirtg consideration both the com-
plexity of numerical schemes and the errors geadray the numerical method we
recommend the Euler's method as a good methodufoerical treatment of frac-
tional ordinary differential equations.
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