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Abstract. Up to the present, the models describing tempexadistribution in the biolo-
gical tissue as a rule based on the Pennes bitfaesfer equation. Taking into account
the nonhomogeneous inner structure of tissue taedwnduction proceeding in this domain
should be described by the hyperbolic equationthén paper the algorithm of numerical
solution of hyperbolic heat conduction equatiompiissented. The explicit variant of finite
differences method is applied and the results ofmdations are shown.

1. Thermal wave model of bioheat transfer

Heat transfer in biological system is usually didwat by the Pennes equation
basing on the classical Fourier law (e.g. [1]). &ese the biological tissues are
the materials with nonhomogeneous inner structurerefore the modified
unsteady heat conduction equation (Cattaneo andotter (CV) equation, hyper-
bolic heat conduction equation, non-Fourier heatdcation equation) should be
taken into account (e.g. [2-4]). A general formtledé thermal wave model of bio-
heat transfer in living tissues is following

=APT (X, th Q(x, th r% 1)
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wherec, A denote the volumetric specific heat and thermaldcativity of tissue,
Q (x, t) is the volumetric heat due to metabolism and dlgerfusion,t is
the relaxation time. The functid@(x, t) is equal to

Q(X,t)=GgCs[ T, ~T(x,1) | +Q, )

whereGg is the blood perfusion rateg is the volumetric specific heat of blood,
Tgis the artery temperature afy, is the metabolic heat source.

It should be pointed out that far= 0 the equation (1) reduces to the well-
known Pennes bioheat equation.
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The equation (1) is supplemented by the boundangition

xOT: T(x tF T,(x) (3)
and initial ones
t=0: T(xt)=T,, w =0 (4)
t=0

where Ty(X) is known boundary temperature afglis known initial temperature
of biological tissue.
The dependence between relaxation tiraed thermal wave velocity is following

CZ:E (5)

T

wherea = A/c is the thermal diffusivity.
Taking into account formula (2) the equation (1IN ba written in the form

O*T(xt) , 9T(x.1) _tkaT(xt)
ot? ot c ot

=al’T(x, t) %[TB ~T(xt)] +% (6)

or

0°T (x, t k)OT(x,t X k Q.
T—a(tz h(u%)—ét )=aDT(x,t)+ E[TB—T(x,t)]+T @

wherek = GgCg.

2. Approximation of time derivatives

In order to solve the problem (7), (3), (4) thedigrid
0=t <t'<..<t"? <t <t’ <. <tF <« (8)
with constant stept =t —t "~ *is introduced.
Using the Lagrange interpolation [4] for the poitt§™ T'2), @' T'™),
T, whereT"?=T(x,t"2), T" ' =T(x, t"™), T'=T(x, t") one obtains

tD[tf‘z,tf]: T(x tF Tf_z(tf_(::::j;(:f_—zf_)tf)+

T (t-t2)(t-t") - (t-t2)(t-t")
(RS G M T (e

(9)




3D thermal wave model of bioheat transfer - solutiy means of finite difference method 93

or

toft2 "] T(x tF Tf‘Z(t_tH)(t_tf)

2(At)°
f-2 f f-2 f-1 (10)
poaltt) (et (et ()
(at)® 2(At)?
On the basis of (10) the time derivative is caltada
toft' 2,1 ]: Tt 2ttt
’ ot 2(At)° an
Tt 2t -t -t 1 2 -t -2
(at)’ 2(At)°
and then
OT(x,t)]  _T' 24T 2+3r" 12)
ot | 27t
while
2 f-2 _ o f-1 f
O°T(x 1) _T'2-2T"*+T (13)

at? (At)z
For time derivative the following approximation claa also taken into account

a1 (14)

3. Finite differences method

For 3D problem and domain oriented in Cartesianorctinate system
X = {X1, X5, X3} one has

0°T (X, %o X, 1) 07T (X, Xy, Xt
O%T (%, X, X, tF (axfz 3 )+ (szzz 3 )+
07T (X, X,, X5, 1)

0%

(15)
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The following approximation of (15) with respect ttee geometrical co-ordi-
nates for constant mesh stepan be taken into account [5]

[OZT +62T +62TJ _Ti—l,j,k _ZTijk +Ti+1,jk +

2 2 2 2
0x 0X, O0Xg h (16)
-I—i,j—l,k_21—ijk+-|—i,j+1k +Ti,jk-l_2Tijk +Ti,jk+1

h? h?

whereT;j i = T (X, Xgj, Xair 1), Ti-njok = T (Xai-1, Xgj, X3 t) €1C.
Using the explicit scheme of FDM one obtains thkofwing approximation
of equation (7)

. . c+tk - -
(Ai)z(-ri}kz_Z-I_ijfkl"'-ri;k)"{ZCZt)(Ti}kz_4-|_ijfk1+3ri;k) =
a
(3
k 1y, Qu
E(TB _-I—ijfkl) +T

(T T T AT T 4T 6T )+ D)
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From equation (17) results that

T 3 c+tk T = 21 ‘4 c+1tk _@_E Ti 4
(At)2 2cAt )| (At)2 2cAt ] h* c|"

- f-1 f-1 f-1 f-1 f-1
AT AT T AT T ) (18)

+
B m _ T 2-|—iJT|:2_ c Tk -I-IIk—Z
c (At) 2cAt

or
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o (T T T 2+ T T T ) + (19)

KT, +Q, | 2ct+At(c+1k) |,
Ac 2cA(at)}? |
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where

A=_' 13 c+1k (20)
(at)? 2cAt

It should be pointed out that for explicit schenfeF®M the stability criterion
should be formulated [5].

4. Results of computations

The biological tissue domain of dimensions 0.0k 01 m L = 0.01 m) has
been considered. Initial temperature of tissue sqlig= 37°C. The following
input data have been taken into accownt: 0.75 W/(mK),c = 310° J/(n?K),
Gg = 0.0005 1/s¢g = 3.9962 J/(K), Tg = 37°C, Q,, = 245 W/n.

On the upper boundamg = L/2, -L/2 < x; < L/2, -L/2 < x, < L/2 the Dirichlet
condition in the form

X+
T+ -T ,
Lj_ e * (T, max)9/64L2

T(Xl’ Xz’E -

9
2 2 2
X]+X,<—L

(21)
9
Tb! X12+X§ >aL2

has been assumed - Figure 1. In equation T2d)= 60°C, T, = 37°C. On the re-
maining part of the boundary the constant tempeediy= 37°C can be accepted.
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Fig. 1. Boundary condition on the upper surfacehefdomain considered
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The domain has been divided into 1000 internabgdl0x 10 x 10) - Figure 2,
time step:At = 0.1 s. Figure 3 illustrates heating curves atpbint (0, 0, 0) for
T =0 andt = 20 s. In Figure 4 the temperature distributiontf= 20 s (left hand

side) andt = 0 s (right hand side) for times 10, 20 and 3ih ghe section
X, = 0 is shown.
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Fig. 2. Discretization
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Fig. 3. Heating curves at the point (0, 0, 0)
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Fig. 4. Temperature distribution for 10 st =20sand =30 st =20,1=0)
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