The website: http://www.amcm.pcz.pl/

Scientific Research of the Institute of Mathematics and Computer Science

ON THE COMATIBILITY OF THE TANGENCY RELATIONS OF RECTIFIABLE ARCS

Tadeusz Konik

 $Institute\ of\ Mathematics\ and\ Computer\ Science,\ Czestochowa\ University\ of\ Technology,\ Poland\\konik@imi.pcz.pl$

Abstract. In this paper the problem of the compatibility of the tangency relations $T_{l_i}(a_i, b_i, k, p)$ (i = 1, 2) of the rectifiable arcs in the generalized metric spaces is considered. Some sufficient conditions for the compatibility of these relations of the rectifiable arcs have been given here.

Introduction

Let E be an arbitrary non-empty set and let l be a non-negative real function defined on the Cartesian product $E_0 \times E_0$ of the family E_0 of all non-empty subsets of the set E. The pair (E, l) we shall call the generalized metric space (see [1]).

Let a, b be arbitrary non-negative real functions defined in a certain right-hand side neighbourhood of 0 such that

$$a(r) \xrightarrow[r \to 0^+]{} 0 \text{ and } b(r) \xrightarrow[r \to 0^+]{} 0$$
 (1)

By $S_l(p,r)_{a(r)}$ and $S_l(p,r)_{b(r)}$ (see [2]) we will denote in this paper the so-called a(r), b(r)-neighbourhoods of the sphere $S_l(p,r)$ in the space (E,l).

We say that the pair (A, B) of sets A, B of the familiy E_0 is (a, b)-clustered at the point p of the space (E, l), if 0 is the cluster point of the set of all real numbers r > 0 such that the sets of the form $A \cap S_l(p, r)_{a(r)}$ and $B \cap S_l(p, r)_{a(r)}$ are non-empty.

Let (see [1, 4])

 $T_l(a, b, k, p) = \{(A, B) : A, B \in E_0, \text{ the pair } (A, B) \text{ is } (a, b)\text{-clustered}$ at the point p of the space (E, l) and

$$\frac{1}{r^k}l(A \cap S_l(p,r)_{a(r)}, B \cap S_l(p,r)_{b(r)}) \xrightarrow[r \to 0^+]{} 0\}$$
 (2)

104 T. Konik

If $(A, B) \in T_l(a, b, k, p)$, then we say that the set $A \in E_0$ is (a, b)-tangent of order k (k > 0) to the set $B \in E_0$ at the point p of the space (E, l).

 $T_l(a, b, k, p)$ defined by (2) we shall call the ralation of (a, b)-tangency of order k of sets at the point p of the generalized metric space (E, l).

Two tangency relations of sets $T_{l_1}(a_1, b_1, k, p)$, $T_{l_2}(a_2, b_2, k, p)$ are called compatible if $(A, B) \in T_{l_1}(a_1, b_1, k, p)$ if and only if $(A, B) \in T_{l_2}(a_2, b_2, k, p)$ for $(A, B) \in E_0$.

Let ρ be a metric of the set E and let A, B be arbitrary sets of the family E_0 . Let us denote

$$\rho(A, B) = \inf\{\rho(x, y) : x \in A, y \in B\}, d_{\rho}A = \sup\{\rho(x, y) : x, y \in A\} (3)$$

By \mathfrak{F}_{ρ} we denote the class of all functions l fulfilling the conditions:

$$1^0 \ l : E_0 \times E_0 \longrightarrow \langle 0, \infty \rangle,$$

$$2^0 \rho(A,B) \leq l(A,B) \leq d_{\rho}(A \cup B)$$
 for $A,B \in E_0$.

Since

$$\rho(x,y) = \rho(\{x\},\{y\}) \le l(\{x\},\{y\}) \le d_{\rho}(\{x\} \cup \{y\}) = \rho(x,y),$$

then from here it follows that

$$l(\lbrace x \rbrace, \lbrace y \rbrace) = \rho(x, y) \text{ for } l \in \mathfrak{F}_{\rho} \text{ and } x, y \in E$$
 (4)

In the present paper the problem of the compatibility of the tangency relations of the rectifiable arcs in the spaces (E, l), for the functions l belonging to the class \mathfrak{F}_{ρ} is considered.

1. The compatibility of the tangency relations of rectifiable arcs

Let ρ be a metric of the set E, and let A be any set of the family E_0 . By A' we shall denote the set of all cluster points of the set A.

Let \widetilde{A}_p be the class of of the form (see papers [1, 4, 5]):

 $\widetilde{A}_p = \{A \in E_0: A \text{ is rectifiable arc with the origin at the point } p \in E \text{ and } p \in E \text{ and } p \in E \text{ arc with the origin at the point } p \in E \text{ arc with } p \in E \text{$

$$\lim_{A \not x \to p} \frac{\ell(\widetilde{px})}{\rho(p, x)} = g < \infty \}$$
 (5)

where $\ell(\widetilde{px})$ denotes the length of the arc \widetilde{px} with the ends p and x.

If g = 1, then we say that the arc $A \in E_0$ has the Archimedean property at the point p of the metric space (E, ρ) , and is the arc of the class A_p .

We say (see [6]) that the set $A \in E_0$ has the Darboux property at the point p of the metric space (E, ρ) , and we shall write this as: $A \in D_p(E, \rho)$, if there exists a number $\tau > 0$ such that $A \cap S_\rho(p, r) \neq \emptyset$ for $r \in (0, \tau)$.

Because any rectifiable arc A with the origin at the point $p \in E$ has the Darboux property at the point p of the metric space (E, ρ) , then from here and from the considerations of the papers [1, 4, 5] it follows the inclusion $\widetilde{A}_p \subset \widetilde{M}_p \cap D_p(E, \rho)$, where

 $\widetilde{M}_p = \{A \in E_0: p \in A' \text{ and there exists } \mu > 0 \text{ such that }$

for an arbitrary $\varepsilon > 0$ there exists $\delta > 0$ such that

for every pair of points $(x, y) \in [A, p; \mu]$

if
$$\rho(p,x) < \delta$$
 and $\frac{\rho(x,A)}{\rho(p,x)} < \delta$, then $\frac{\rho(x,y)}{\rho(p,x)} < \varepsilon$ (6)

and

$$[A, p; \mu] = \{(x, y): x \in E, y \in A \text{ and } \mu \rho(x, A) < \rho(p, x) = \rho(p, y)\}.$$

Because $\widetilde{M}_p = \widetilde{M}_{p,1}$, then from here, from Theorem 2.1 of the paper [7] and from the above inclusion it follows the following corollary:

Corollary 1. If in the metric space (E, ρ) the arc A belongs to the class \widetilde{A}_p , then

$$\frac{a(r)}{r} \xrightarrow[r \to 0^+]{} 0 \tag{7}$$

if and only if

$$\frac{1}{r}d_{\rho}(A \cap S_{\rho}(p,r)_{a(r)}) \xrightarrow[r \to 0^{+}]{} 0 \tag{8}$$

Using this corollary we shall prove:

Theorem 1. If $l_i \in \mathfrak{F}_{\rho}$ (i=1,2),

$$\frac{a(r)}{r} \xrightarrow[r \to 0^+]{} 0 \quad and \quad \frac{b(r)}{r} \xrightarrow[r \to 0^+]{} 0 \tag{9}$$

then for arbitrary rectifiable arcs of the classes \widetilde{A}_p the tangency relations $T_{l_1}(a,b,k,p)$ and $T_{l_2}(a,b,k,p)$ are compatible.

Proof. Let us assume that $(A, B) \in T_{l_1}(a, b, 1, p)$ for $A, B \in A_p$. Hence and from (6) it follows that the pair of sets (A, B) is (a, b)-clustered at the point p of the space (E, l_1) and

106 T. Konik

$$\frac{1}{r}l_1(A \cap S_{\rho}(p,r)_{a(r)}, B \cap S_{\rho}(p,r)_{b(r)}) \xrightarrow[r \to 0^+]{} 0 \tag{10}$$

From the inequality

$$d_{\rho}(A \cup B) \le d_{\rho}A + d_{\rho}B + \rho(A, B) \quad \text{for } A, B \in E_0$$
 (11)

from the properties of the function f and from the fact that $l_1, l_2 \in \mathfrak{F}_{\rho}$ we get

$$\left| \frac{1}{r} l_2(A \cap S_{\rho}(p, r)_{a(r)}, B \cap S_{\rho}(p, r)_{b(r)}) - \frac{1}{r} l_1(A \cap S_{\rho}(p, r)_{a(r)}, B \cap S_{\rho}(p, r)_{b(r)}) \right| \\
\leq \frac{1}{r} d_{\rho} ((A \cap S_l(p, r)_{a(r)}) \cup (B \cap S_{\rho}(p, r)_{b(r)})) \\
- \frac{1}{r} \rho (A \cap S_{\rho}(p, r)_{a(r)}, B \cap S_{\rho}(p, r)_{b(r)}) \\
\leq \frac{1}{r} d_{\rho} (A \cap S_{\rho}(p, r)_{a(r)}) + \frac{1}{r} d_{\rho} (A \cap S_{\rho}(p, r)_{a(r)}) \tag{12}$$

From the assumption (9) and from Corollary 1 it follows that

$$\frac{1}{r}d_{\rho}(A \cap S_{\rho}(p,r)_{a(r)}) \xrightarrow[r \to 0^{+}]{} 0 \tag{13}$$

and

$$\frac{1}{r}d_{\rho}(B \cap S_{\rho}(p,r)_{b(r)}) \xrightarrow[r \to 0^{+}]{} 0 \tag{14}$$

From (13), (14) and from the inequality (12) we get

$$\frac{1}{r}l_2(A \cap S_{\rho}(p,r)_{a(r)}, B \cap S_{\rho}(p,r)_{b(r)}) \xrightarrow[r \to 0^+]{} 0 \tag{15}$$

Since the functions $l_1, l_2 \in \mathfrak{F}_{\rho}$ generate on the set E the same metric ρ (see (6)), from the fact that the pair of sets (A, B) is (a, b)-clustered at the point p of the space (E, l_1) it follows that is (a, b)-clustered at the point p of the space (E, l_2) . Hence and from (15) it results that $(A, B) \in T_{l_2}(a, b, 1, p)$.

If $(A, B) \in T_{l_2}(a, b, 1, p)$, then similarly we prove that $(A, B) \in T_{l_1}(a, b, 1, p)$. Hence it follows that the tangency relations $T_{l_1}(a, b, 1, p)$ and $T_{l_2}(a, b, 1, p)$ are compatible in the class \widetilde{A}_p of rectifiable arcs.

Let a_i, b_i (i = 1, 2) be non-negative real functions defined in a certain right-hand side neighbourhood of 0 and fulfilling the condition

$$a_i(r) \xrightarrow[r \to 0^+]{} 0 \text{ and } b_i(r) \xrightarrow[r \to 0^+]{} 0$$
 (16)

Let us denote

$$\breve{a} = \max(a_1, a_2), \ \breve{b} = \max(b_1, b_2)$$
(17)

Now we prove the following theorem:

Theorem 2. If $l \in \mathfrak{F}_{\rho}$ and

$$\frac{a_i(r)}{r} \xrightarrow[r \to 0^+]{} 0, \quad \frac{b_i(r)}{r} \xrightarrow[r \to 0^+]{} 0 \quad \text{for } i = 1, 2$$
 (18)

then for arbitrary arcs of the class \widetilde{A}_p the tangency relations $T_l(a_1, b_1, 1, p)$ and $T_l(a_2, b_2, 1, p)$ are compatible.

Proof. Let us assume that $(A, B) \in T_l(a_1, b_1, 1, p)$ for any function $l \in \mathfrak{F}_\rho$ and sets $A, B \in \widetilde{A}_p$. Hence it follows that

$$\frac{1}{r}l(A \cap S_{\rho}(p,r)_{a_1(r)}, B \cap S_{\rho}(p,r)_{b_1(r)}) \xrightarrow[r \to 0^+]{} 0 \tag{19}$$

From the inequality (11), from (17) and from the fact that $l \in \mathfrak{F}_{\rho}$ we get

$$\frac{1}{r}(l(A \cap S_{\rho}(p,r)_{a_{2}(r)}, B \cap S_{\rho}(p,r)_{b_{2}(r)}) - l(A \cap S_{\rho}(p,r)_{a_{1}(r)}, B \cap S_{\rho}(p,r)_{b_{1}(r)})) \\
\leq \frac{1}{r}d_{\rho}((A \cap S_{\rho}(p,r)_{a_{2}(r)}) \cup (B \cap S_{\rho}(p,r)_{b_{2}(r)})) \\
- \frac{1}{r}\rho(A \cap S_{\rho}(p,r)_{a_{1}(r)}, B \cap S_{\rho}(p,r)_{b_{1}(r)}) \\
\leq \frac{1}{r}d_{\rho}((A \cap S_{\rho}(p,r)_{\check{a}(r)}) \cup (B \cap S_{\rho}(p,r)_{\check{b}(r)})) \\
- \frac{1}{r}\rho(A \cap S_{\rho}(p,r)_{\check{a}(r)}, B \cap S_{\rho}(p,r)_{\check{b}(r)}) \\
\leq \frac{1}{r}d_{\rho}(A \cap S_{\rho}(p,r)_{\check{a}(r)}) + \frac{1}{r}d_{\rho}(B \cap S_{\rho}(p,r)_{\check{b}(r)}) \tag{20}$$

From (17), (18) and from Corollary 1 it follows that

$$\frac{1}{r}d_{\rho}((A \cap S_{\rho}(p,r)_{\check{a}(r)}) \xrightarrow[r \to 0^{+}]{} 0 \tag{21}$$

and

$$\frac{1}{r}d_{\rho}(B \cap S_{\rho}(p,r)_{\check{b}(r)}) \xrightarrow[r \to 0^{+}]{} 0 \tag{22}$$

From (19), (21), (22) and from the inequality (20) we have

$$\frac{1}{r}l(A \cap S_{\rho}(p,r)_{a_{2}(r)}, B \cap S_{\rho}(p,r)_{b_{2}(r)}) \xrightarrow[r \to 0^{+}]{} 0$$
 (23)

108 T. Konik

From the fact that the sets $A, B \in D_p(E, \rho)$ it follows that the pair of sets (A, B) is (a, b)- clustered at the point p of the metric space (E, ρ) . Hence and from (23) we obtain that $(A, B) \in T_l(a_2, b_2, 1, p)$.

If the pair of sets $(A, B) \in T_l(a_2, b_2, 1, p)$, then identically we prove that $(A, B) \in T_l(a_1, b_1, 1, p)$. From here it follows that the tangency relations $T_l(a_1, b_1, 1, p)$, $T_l(a_2, b_2, 1, p)$ are compatible in the class \widetilde{A}_p of rectifiable arcs.

From the Theorems 1 and 2 it follows:

Corollary 2. If $l_i \in \mathfrak{F}_\rho$ and the functions a_i, b_i (i = 1, 2) fulfil the condition (18), then the tangency relations $T_{l_1}(a_1, b_1, 1, p)$ and $T_{l_2}(a_2, b_2, 1, p)$ are compatible in the class \widetilde{A}_p of rectifiable arcs.

All results presented in this paper are true for the rectifiable arcs of the class A_p having the Archimedean property at the point p of the metric space (E, ρ) .

References

- Waliszewski W., On the tangency of sets in generalized metric spaces, Ann. Polon. Math. 1973, 28, 275-284.
- [2] Konik T., On the reflexivity symmetry and transitivity of the tangency relations of sets of the class $\widetilde{M}_{p,k}$, J. Geom. 1995, 52, 142-151.
- [3] Konik T., On some tangency relation of sets, Publ. Math. Debrecen 1999, 55/3-4, 411-419.
- [4] Chądzyńska A., On some classes of sets related to the symmetry of the tangency relation in a metric space, Ann. Soc. Math. Polon., Comm. Math. 1972, 16, 219-228.
- [5] Waliszewski W., On the tangency of sets in a metric space, Colloq. Math. 1966, 15, 127-131.
- [6] Konik T., On some property of the tangency relation of sets, Balkan Journal of Geometry and Its Applications 2007, 12(1), 76-84.
- [7] Konik T., On the sets of the classes $M_{p,k}$, Demonstratio Math. 2000, 33(2), 407-417.
- [8] Goląb S., Moszner Z., Sur le contact des courbes dans les espaces metriques généraux, Colloq. Math. 1963, 10, 105-311.
- [9] Pascali E., Tangency and ortogonality in metric spaces, Demonstratio Math. 2005, 38(2), 437-449.