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Abstract. In the paper the example of inverse problems egiahn in the thermal theory of
foundry processes is discussed. The solidificatrtypical binary alloys is considered,
at the same time the macro model basing on theitsitikesthermal capacity is taken into
account (fixed domain approach). The informatiocessary in order to determine the kinetics
of casting solidification results from the knowledgf cooling (heating) curves at the selected
set of points from casting and/or mould sub-domalitse identified value corresponds to
the volumetric latent heat of alloy and, as will &wn, the knowledge of this parameter
allows to determine the course of solidificatiomparticular the changes of temporary values
of volumetric solid state fraction at the pointdested from casting domain. The inverse
problem considered is solved using the gradienhoaetOn the stage of humerical simulation
the FDM algorithm is used. In the final part of pathe example of computations is shown.

1. Mathematical formulation of the problems

The energy equation describing the casting satidiion is of the following form
[1, 2]

OO my (o e 120D ®

c(T)

where ¢(T) is a volumetric specific heat}(T) is a thermal conductivityl. is
a volumetric latent heat (this parameter is assuméé unknown),f, is a volumetric

solid state fraction at the considered point fraasting domain, x, t denote the
temperature, geometrical co-ordinates and time.fdime of equation (1) shows that
only conductional heat transfer is considered aedconvection in the molten metal
is neglected.

Terms containing the derivatives of temperature famdth respect to time can
be joined together and then, after the simple nmasitieal manipulations [1, 2],
one obtains the modified form of equation (1), ngme
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C(T)Mzm[/\(T) OT(% 9] )
where
o()=o1)- L5 ®

The functionC(T) is called a substitute thermal capacity [1, 2}sHbuld be
pointed out, that the typical binary alloys soldih an interval of temperature
[TS, TL] . The sub-domain corresponding to this intervalstibmes a mushy zone
fs0(0,1), for T<Ts: fs=1 (solid state), while forT >T : f;=0 (molten
metal). Additionally for sub-domains of solid anquid d f;/dT = 0 and equation

(3) determines the temperature field in whole, esrionally homogeneous,
casting domain. One can see, that the knowledgdewiperature-dependent

function fs allows to determine the course @(T) for TO[T,, T ], but

the other approach is also acceptable. One camasginectly the form ol’C(T)
fulfilling the condition resulting from the simpfghysical considerations, namely

[e(MdT=¢(T-T)+ 1L (4)

wherec, is a mushy zone volumetric specific heat (foransec, =0.5(c; +¢c,)).
Equation determining a temperature field in a mauid-domain is the following

0T, (x 1)

Cm(T)T’:D[/]m(T)] T(% 9] (5)

wherec, is a mould volumetric specific heat,, is a mould thermal conductivity.

In the case of typical sand molds on the contatase casting-mould the continuity
of temperature and heat flux can be accepted

3 0T(x 1) =_/]maTm(>s t)
xr _: on on (6)
T(x )=T.(x Y

whered/d n denotes a normal derivative.
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On the external surface of the system the conditi@ngeneral form
XIT ;@ [T(x,t),M} 0 )
on
is given, at the same time the typical formula afeiging a heat exchange between
mould and environment is the following

0T, (x t)

X ,: = A, 3
n

a[T(x & T] (8)

where a is a heat transfer coefficienif, is an ambient temperature. For tite 0
the initial values

t=0: T(x0=T(¥. T(x0=Te(3 (9)

are also known.

2. Substitute thermal capacity

In literature one can find also the “direct” defions ofC(T) , in other words the
form of functionC(T) is assumed a’priori, for example [3]

C(T)=a+aT+aT+aT+a T, T T T (10)
wherea,, e=0,1, 2, 3, < are the coefficients and they can be found orbésés of

conditions assuring the continuity of' class and physical correctness of
approximation, namely

C(T)=q

C(Ts) =cg

dc(T) “o

ar | " (11)
dC(T) “o

dT T=Te

and additionally the condition (4) must be alsdilfad.
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The number of unknown parameters corresponds tmuheer of conditions and
one can find the values @atf,, in particular [4]

csT-c To_(e=Co) T Ts(Tu* T 30T T L

0

T (T.-To)° (T.-T)°
6(c, —ce)T, Ty 60T, T(T+T)L
a =- 3 5
(r.-75) (T-T)
0= 3(c, -c) (TL3+ To) . 30(T+ 4TLT85+ ) L 12
(T -T7o) (T-7)
_ 2ci-cs) eo[T +TL
(r-m)" (Te-1)
4 o 30
4
(ro-7o)

The course of substitute thermal capacity foundqushe approximation (10) for
Al-Si alloy (5% Si) is shown in Figure 1.
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Fig. 1. Substitute thermal capacity

It is assumed that in the formula determini@§T) the parametel is unknown and

the first stage of the algorithm reduces to thetswt of inverse problem concerning
this parameter identification. Next using the défin (3) one has

cp-L(jjfTS=ao+a1T+a2T2+ag18+a1‘, T T @)
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and next

Cp —Q, 1 1 1 1
f =t 2T-—aT°-—aTP-—a T -—3g T+ ( 14
s L 2L31 3Laz 4Las 5 g "+ (14)

The constan€ results from the conditioft =T, : f; =0 and finally

fsz—a";cp (TL—T)+2—1La1(TL2—T2) +3_T_ aZ(TLS—TB) + s
1 1

+Ia3(TL4 -T¢) te a(1°-1), 1O T, T]

One can check that equation (15) fulfills the secooondition, namely
T=Ts: fg=1. The last formula determines the local and tenyovalue of fg

this means allows to predict the kinetics of cassialidification.

3. Inverse problem

In order to identify the value df, the additional information connected with the
course of the solidification process is necessdoy.we assume that the valug§
at the set of point, selected from the domain considered for tirnesre known

T(;i: Td()gl tf)’ |:11 21--'1M Ll f: 1! 21|!: (16)

Now, the least squares criterion is applied [5-7]
1 M F 2
S()=r =2 2(T' - W) (17)

whereT," =T(x, t") is the calculated temperature at the poiptor time t " for

arbitrary assumed value bf
The criterion (17) is differentiated with respesttie unknown volumetric latent
heatL and next the necessary condition of optimum idiegpp

dS_ 2 & o) 0T
L_MFZZ(Ti T) oL | _ =0 (18)

LK

wherek is the iteration numberl{ for k =0 is the arbitrary assumed value of latent
heat, while L* for k>0 results from the previous iteration). The functidrl is

expanded in the Taylor series using the known value*, this means
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oT'

()

( < - Lk) (19)

L=Lk

Putting (19) into (18) one has

or
AR
Lt =L+ — (21)
2%
where

(22)

are the sensitivity coefficients akd= 0, 1, ... K.

In order to determine the sensitivity coefficieatgpearing in equation (21), the
direct approach of sensitivity analysis can be iedpl It depends on the
differentiation of governing equations creating fodidification model with respect
to L. So, the following additional problem connectedhwthe sensitivity analysis
should be solved

d 0
<O - C(T)aza(i(’t)—/DZZ(x—t) ((.;,_(I_T) Z%) Té():gt)
x@ cmaz"a“—(t)“): AR 2Z(% 9
_ ()Z(x,t):_ 0Z.,(x1)

XM : A an An an (23)

Z(x )=2Z,(x 9
xr ,: - mazm—(x,t): aZ.(x1)

on
t=0: Z(x,00=0, Z,(x,0=0

This problem is strongly coupled with the basic,dmecause in order to find its
solution, the time derivativé T (x, t)/d t must be known.
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4. Results of computations

The casting-core-mould system shown in Figure 2 bhasn considered.
The following input data have been introduced (Akoy): ¢ =2.943 M J ni K,

c,=3.0,¢ =3.07, A3=250 W/ mK,A,=1774 =10, L=990.6 MJ ni
(this value is identified during the first stagecoimputations).

Fig. 2. Casting-mould system

Additionally it was assumed that the substitutertiad capacity of mushy zone
results from formula (10). The volumetric specitieat of mould and core

¢, =1.750 MJ ni K, while the thermal conductivityl  =1.0. The border and
initial temperatures equdly =577 C, T, =650° C, T,=66C C, T ,=20C. On

a stage of numerical modelling the finite differeaanethod (FDM) has been used.
The casting-mould domain has been divided into @trol volumes, time step
At =0.001< The values of “measured” temperatures result floendirect prob-

lem solution (for above collected input data) aonfr this solution disturbed in
random way (in order to be closer to the real mesasants).

In Figures 3 and 4 the cooling curves and kinatfcsolidification at the points
marked in Figure 2 are shown. They correspondeaaehl value oE.
Figure 5 illustrates the temperature field in tlystem considered for times 5
and 15 s.

The iteration process of latent heat estimationtintafrom the valud. = 0 is
shown in Figure 6 (undisturbed data), at the same the values of “measured”

temperatureT,, correspond to node 3 (only one sensor has been tako

account). One can see that the number of iteratiessring the good identification
is small.
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Fig. 3. Cooling curves at the points 1, 2, 3
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Fig. 4. Kinetics of solidification at the points2, 3

The second numerical experiment concerns the Oisturcooling curve at
the point 3. The solution of direct problem is sBommed in a random way and
the final result is shown in Figure 7. Using thiput data the good identification
of latent heat has been obtained after 5 iterati®wnming up, the algorithm
proposed is quite effective and exact even in #ee ©f disturbations introduced
during input data construction.
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Fig. 5. Temperature distribution
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Fig. 6. Identification of latent heat
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Fig. 7. Disturbed cooling curve at the point 3
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