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Abstract. In the paper the inverse problem consisting in estimation of boundary heat flux 
during cast iron solidification is presented. In order to solve the inverse problem formulated  
it is assumed that the cooling curves at selected set of points from the casting domain are 
given. The algorithm bases on the gradient method coupled with the finite differences method.  
In the final part of the paper the results of computations are shown. 

1. Direct problem 

The 1D casting-mould system is considered. The influence of the mould on the 
course of solidification process is substituted by the Neumann condition. Transient 
temperature field in casting domain determines the energy equation 
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where C (T ) is the substitute thermal capacity [1, 2] of cast iron - Figure 1, λ is  
the mean value of thermal conductivity, T is the temperature, x is the spatial  
co-ordinate and t is the time. 

In the case of cast iron solidification the following approximation of substitute 
thermal capacity can be taken into account (Fig. 1) [1, 3] 
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where TL is the liquidus temperature, TS is the solidus temperature, TA, TE correspond 
to the border temperatures, cL, cS are the volumetric specific heats of molten metal 
and solid state, respectively, Qaus = Qaus1 + Qaus2, Qeu are the latent heats connected 
with the austenite and eutectic phases evolution, at the same time Q  = Qeu + Qaus. 
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Fig. 1. Substitute thermal capacity of cast iron 

For x  = 0 (axis of symmetry) the no-flux condition 
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is accepted. For x  = L the time dependent boundary heat flux is given, namely 
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For the moment t  =  0 the initial temperature distribution is known 

 0( , 0) ( )T x T x=  (5) 

2. Inverse problem 

If the parameters appearing in governing equations are known then the direct 
problem is considered. If part of them is unknown then the inverse problem should 
be formulated. In particular, in this paper the problem of time dependent boundary 
heat flux qb(t) identification is presented. It is assumed, that the boundary heat flux 
can be expressed as follows 



Estimation of boundary heat flux during cast iron solidification 193

 ( )b

b
q t a

t
= +  (6) 

where a, b are the unknown parameters. 
In order to solve the inverse problem formulated the additional information 

concerning the cooling curves at the selected set of points from the domain consi-
dered must be given.  

So, it is assumed that the values f
d iT  at the sensors xi from casting sub-domain 

for times t f are known, namely 

 ( ), , 1, 2, , , 1, 2, ,f f
d i d iT T x t i M f F= = =� �  (7) 

3. Gradient method of inverse problem solution 

In order to solve the inverse problem the least squares criterion is applied [4, 5] 
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where f
d iT  (c.f. equation (7)) and ( ),f f

i iT T x t=  are the measured and estimated 

temperatures, respectively, for the sensor xi , i  = 1, 2, ... , M and for time t f. 
The estimated temperatures are obtained from the solution of the direct problem 
(c.f. chapter 1) by using the current available estimate for the unknown parameters. 

Differentiating the criterion (8) with respect to the unknown parameters a, b 
and using the necessary condition of optimum one obtains the following system of 
equations 
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Function f
iT  is expanded in a Taylor series about known values of a, b, this means 
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where k is the number of iteration, a0, b0 are the arbitrary assumed values of a, b 
while ak, bk for k > 0 result from the previous iteration. 
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The dependence (10) can be written in the form 

 ( ) ( ) ( ) ( ) ( )1 1
1 2

k k kf f f k k f k k
i i i iT T U a a U b b+ += + − + −  (11) 

where 

 ( ) ( )1 2,
k k

f f
k kf f

i i

i ia a b b

T T
U U

a b
= =

      ∂ ∂=   =     ∂ ∂         

 (12) 

are the sensitivity coefficients. 
Putting (11) into (9) one obtains 
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or 
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This system of equations allows to find the values of a k+1, b k+1. The iteration 
process is stopped when the assumed number of iterations K is achieved. 

It should be pointed out that in order to obtain the sensitivity coefficients (12), 
the governing equations should be differentiated with respect to a and b.  

Differentiation of equations (1), (3), (4), (5) with respect to a leads to the  
following additional boundary initial problem (c.f. condition (6)) 
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where U1 (x, t) = ∂T (x, t)/∂a.  
In similar way the governing equations are differentiated with respect to b and 

then 
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where U2 (x, t) = ∂T (x, t)/∂b.  
So, for each time step the basic problem and two additional problems connected 

with the sensitivity functions should be solved. These problems have been solved 
by means of the finite differences method [1]. 

4. Results of computations 

The casting of thickness 2L1 = 0.02 m has been considered. The following input 
data have been taken into account: TL = 1250oC, TA = 1200oC, TE = 1130oC, 
TS = 1110oC, λ = 30 W/mK, pouring temperature T0 = 1300oC. The substitute  
thermal capacity is defined by equation (2), where p1 = 5.88 MJ/m3 K, p2 = 24.384, 
p3 = 11.32, p4 = 34.75, p5 = 5.4. 

In order to estimate the boundary heat flux (6) the courses of cooling curves 
(c.f. equation (5)) at the points x1 = 0 m (axis of symmetry) and x2 = 3L/4 have been 
taken into account (Fig. 2). They result from the direct problem solution under  
the assumption that qb (t) = 0.3 + 0.7/t MW/m2 (a = 0.3, b = 0.7). 

The basic problem and additional ones connected with the sensitivity functions 
have been solved using the explicit scheme of finite differences method [1] (time 
step �t = 0.05, mesh step h = 0.001 m). In Figures 3 and 4 the courses of sensitivity 
functions U1 and U2 for real values of a, b at the points 1, 2 are shown. 
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Fig. 2. Cooling curves 

-500 

-400 

-300 

-200 

-100 

0

0 36 72 108 144 180

U1

t [ s ]

1

2

 
Fig. 3. Courses of sensitivity function U1 at the points 1, 2 
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Fig. 4. Courses of sensitivity function U2 at the points 1, 2 
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The inverse problem has been solved for zero initial values of unknown pa-
rameters a, b. Figure 5 illustrates the courses of iteration process. It is visible that 
the parameters are estimated correctly and after a few iterations the real values of 
a, b have been obtained. 
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Similar computations have been done for disturbed data - Figure 6. In this case 
also the proper estimation of time dependent boundary heat flux has been obtained. 
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