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Abstract. In the paper the macro model of volumetric solidification is discussed. The mathe-
matical description of the process bases on a one domain approach, this means in order to take 
into account the evolution of latent heat, the substitute thermal capacity is introduced to  
the energy equation. This parameter is determined using the well known Scheil model of  mac-
rosegregation. In the first part of paper the theoretical considerations are presented,  while  in  
the  second one the example of simulation are presented (solidification of Al-Si alloy is con-
sidered). The numerical algorithm bases on the finite differences method. 

1. Mathematical description of the problems 

At first the mass balance of alloy component of solidifying material Ω will be   
presented. Considering two successive time levels t and t + ∆t one obtains the  
following form of balance discussed 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ttzttmttzttmtztmtztm LLSSLLSS ∆+∆++∆+∆+=+  (1) 

where zS , zL are the concentrations of alloy component in solid and liquid phases, 
mS  is a mass of solidified part of domain considered, mL is a mass of molten metal. 
Assuming that the mass densities ρS =  ρL one can transform the balance (1) to  
the form 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ttzttVttzttVtztVtztV LLSSLLSS ∆+∆++∆+∆+=+  (2) 

where VS, VL are the volumes of liquid and solid in domain Ω. 
The change of VS (t+∆t) − VS (t) (volumetric solidification) is conventionally 
shown in Figure 1. The values of VS, VL and zS, zL at the moment t+∆t can be found 
using the Taylor formula 
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Fig. 1. Change of global VS  

Neglecting the second order terms (∆t2) one obtains the mass balance in the form 
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where  fS = VS /V, fL = VL /V are the volumetric fractions of solid and liquid phases 
in domain Ω (V is a volume of Ω) 
We introduce the partition coefficient k = zS /zL  [1] (this parameter is assumed to be 
a constant value), and apply the obvious dependence fS = 1−fL . So  
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The Scheil model is constructed under the assumption that diffusion of alloy com-
ponent in a liquid phase proceeds immediately (diffusion coefficient DL → ∞), 
while diffusion in a solid phase can be neglected (DS = 0). From the point of mass 
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balance presented previously it corresponds to the assumption dzS /dt = 0 and then 
the equation (9) takes a form 
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This  simple  differential  equation  must  be  solved  using the condition z = z0 : fL  = 1 
(z0 is an initial concentration of alloy component). In this place it should be pointed 
out that the constant value of k correspond to equilibrium diagram created by two 
straight lines with common point (0, Tp), Tp is a solidification point of pure metal - 
Figure 2. 
 

 
Fig. 2. A fragment of equilibrium diagram 

A situation close to this assumption takes place (among others) in the case of Al-Si 
alloy (for the small concentrations of Si). 
The solution of equation (10) is the following 
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The equation determining the course of upper border line T = TL (Fig. 2) can be 
written in the form 

 Lp zmTT +=  (12) 

where m is a slope of line T (zL). So, the equation (11) can be transformed to the form 
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    Now, the basic energy equation determining the solidification and cooling 
processes in domain Ω will be discussed. It is the parabolic equation known as  
the Fourier-Kirchhoff one [2, 3]  
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where c(T) is a volumetric specific heat, λ(T) is a thermal conductivity, L is  
a volumetric latent heat, T, x, t denote the temperature, geometrical co-ordinates and 
time. The form of equation (14) shows that only conductional heat transfer is 
considered and the convection in the molten metal is neglected. 
Let us assume that the function fS is temperature-dependent one. Because 
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(this transformation is typical in the case of fixed domain approach application) 
therefore the equation (14) takes a form [2, 3] 
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Parameter 
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is called a substitute thermal capacity and in the case considered it is given by  
the formula 
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The details concerning above equation will be discussed in the next chapter.  

2. Results of computations 

The 2D object being a composition of casting, core and mould sub-domains is 
shown in Figure 1. It corresponds to the symmetrical fragment of frame with       
different walls thicknesses. The casting is made from Al-Si alloy (2% Si). 
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Fig. 3.  Domain considered 

The following input data have been introduced: cS = 2.96 MJ/m3 K, cL = 3.07, λS  = 
= 250 W/mK, λL = 104, L = 990.6 MJ/m3 , k = 0.25, Tp = 660o C. 
The equations determining the heating processes proceeding in the core and mould 
sub-domains have a form 
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where cm(T ) is a volumetric specific heat of core and mould (these values have 
been assumed as the same and the constant ones), λm(T ) is a thermal conductivity 
of core and mould (as previously λm = λc = const.). So, cm = 1.750 MJ/m3K, while 
thermal conductivity λm = 1.0. 
On the contact surfaces casting-mould and casting-core the continuity of tempera-
ture and heat flux is assumed 
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where ∂/∂n denotes a normal derivative. 
Taking into account the symmetry of frame geometry on the external surface of  
the system the no-flux condition in a form 
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is given. Additionally the initial temperature field in the system is known, in  
particular 

 ( ) ( ) 200,,6600,:0 === xTxTt m  (23) 
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The definition of C (T ) - equation (19) is correct from the mathematical point 
of view, but in practice the certain difficulties appear. In order to assure the conti-
nuity of (19) at the temperature corresponding to fS = 1 (fL = 0) in a place of c(T) 
one should introduce the value of cS. Because of the fact that function (13) does 
not tends towards 0 for temperature characteristic for solid state and the shape of 
equilibrium diagram of Al-Si alloy (e.g. [4]) only in rather small fragment  
fulfills the conditions resulting from Figure 2, the value of c(T ) must be assumed 
in an artificial way. It turned out that the continuity of substitute thermal capacity 
at the border temperature  between mushy  zone  and solid state on obtains for  
c(T ) = 1.5 MJ/m3 K (Fig. 4). For the others concentrations of Si this value should 
be changed.  
 

 
Fig. 4. Course of substitute thermal capacity 

Summing up, it seems, that the better variant reduces to the assumption of function  
C (T ) in the form 

 ( ) ( )[ ]p
SS TtxTacTC −+= ,  (24) 

The physical condition resulting from a change of physical enthalpy 
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must be also fulfilled and additionally the parameter p should be chosen in this way 
in order to obtain the course of C (T ) close to the shape shown in Figure 4. 
In Figure 5 the cooling curves at points 1, 2, 3 from costing domain obtained for 
collected above input data are shown. On a stage of numerical modelling the finite 
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differences method (FDM) has been used. The  casting-core-mould domain has been 
divided into 900 control volumes, time step ∆t = 0.001 s. 
 

 
Fig. 5. Cooling curves 

It should be pointed out that the formulas (11) and (19) are known in literature, but 
the aim of authors was to show how these equations can be educed. Additionally we 
wanted to test the effectiveness of approach basing on the Scheil theory in numerical 
simulation of solidification process. 
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