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Abstract. In the article I have given the some solution of the Laplace-Young equation  

describing the shape of capillary surface. 

Introduction 

The Laplace-Young equation cannot be solved analytically in the global case 

([1]). So it existe a some solution having continuous derivatives of all orders  

(propositon 2). 

1. Solution of the problem 

Consider a following basic form of the Laplace-Young equation [1, 2] 
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where 0>p , 0>y  and 0>
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with the initial condition ( ) 01 =z . 
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Proposition 1. The solution of the equation (1) is given by 
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Proof. In fact, we have  

 
( )22

2

ln1

1
1

ypy

z

+

=+  

and 

 
( )33

ln1

ln1

ypy

pyp

dy

dz
z

+

++
−=  

so 

 
( ) ( )

2

2
1

1

ln1

11

ln1

ln1

1
zp

yypy
p

yypy

pyp

dy

dz

z

z
+−−=

+

−−=

+

++

−=

+

 

since  1

1

<<

−

ye
p . 

Thus the solution of the equation (L-Y) yields to the solution of the equation 
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with the initial condition ( ) 10 =y . 

Proposition 2. In the band 1
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p  the equation (2) has the inegral  
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with the initial condition  ( ) 10 =y  (after prolongation on the rigth). 

Replacing 

 ( )ypyz ln1+=  (4) 
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we obtain an integral solution 
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where 1
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p  and 10 << z . The inverse function ( )zyy =  given by the equa-

tion (4) defines correct the function 
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In the neighbourhood on the left of the point 1=z  ( 1<y ) we obtain the develop-

ment of the function ( )zf  in a series 
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Thus the inegral (5) yields to the integral 
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with the initial condition ( ) 11 =z . 

In the neighbourhood on the rigth of the point 0=z  ( p
ey

1
−

> ) we obtain the de-

velopment of the function ( )zf  in a series 
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In this case the inegral (5) yields so to the integral 
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Remark. The solution of the equation (2) in the band p
ey

1

0

−

<<  is a subject 

of  my next researchs [3]. 
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