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Abstract. Up to the present, the models describing temperature distribution in the biolo-
gical tissue as a rule based on the Pennes bioheat transfer equation. Taking into account  
the nonhomogeneous inner structure of tissue the heat conduction proceeding in this domain 
should be described by the hyperbolic equation. In the paper the algorithm of numerical 
solution of hyperbolic heat conduction equation is presented. The explicit variant of finite 
differences method is applied and the results of computations are shown. 

1. Thermal wave model of bioheat transfer 

Heat transfer in biological system is usually described by the Pennes equation 
basing on the classical Fourier law (e.g. [1]). Because the biological tissues are  
the materials with nonhomogeneous inner structure therefore the modified  
unsteady heat conduction equation (Cattaneo and Vernotte (CV) equation, hyper-
bolic heat conduction equation, non-Fourier heat conduction equation) should be 
taken into account (e.g. [2-4]). A general form of the thermal wave model of bio-
heat transfer in living tissues is following 
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where c, λ denote the volumetric specific heat and thermal conductivity of tissue, 
Q (x, t) is the volumetric heat due to metabolism and blood perfusion, τ is  
the relaxation time. The function Q (x, t) is equal to 

 ( ) ( )B B B mQ x, t G c T T x, t Q=  −  +   (2) 

where GB is the blood perfusion rate, cB is the volumetric specific heat of blood, 
TB is the artery temperature and Qm is the metabolic heat source. 

It should be pointed out that for τ = 0 the equation (1) reduces to the well-
known Pennes bioheat equation. 
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The equation (1) is supplemented by the boundary condition 
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where Tb(x) is known boundary temperature and T0 is known initial temperature 
of biological tissue. 
The dependence between relaxation time τ and thermal wave velocity C is following 

 2

τ

a
C =  (5) 

where a = λ/c is the thermal diffusivity. 
Taking into account formula (2) the equation (1) can be written in the form 
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or 
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where k = GBcB. 

2. Approximation of time derivatives 

In order to solve the problem (7), (3), (4) the time grid 

 0 1 2 10 f f f Ft t ... t t t ... t− −= < < < < < < < < ∞ (8) 

with constant step ∆t = t f – t f − 1 is introduced. 
Using the Lagrange interpolation [4] for the points (t f −2, T f −2 ), (t f −1, T f −1 ), 

(t f, T f ), where T f −2 = T (x, t f −2 ), T f −1 = T (x, t f −1 ), T f = T (x, t f ) one obtains 
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or 
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On the basis of (10) the time derivative is calculated 

 

( )
( )

( ) ( )

1
2 2

2

2 1 2
1

2 2

, 2
, :

2

2 2

2

f f
f f f

f f f f
f f

T x t t t t
t t t T

t t

t t t t t t
T T

t t

−
− −

− − −
−

∂ − −
 ∈ = −  ∂ ∆

− − − −+
∆ ∆

 (11) 

and then 
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while 
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For time derivative the following approximation can be also taken into account 
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3. Finite differences method 

For 3D problem and domain oriented in Cartesian co-ordinate system 
x = {x1, x2, x3} one has 
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The following approximation of (15) with respect to the geometrical co-ordi-
nates for constant mesh step h can be taken into account [5] 

 

2 2 2
1, , 1, ,

2 2 2 2
1 2 3

, 1, , 1, , , 1 , , 1

2 2

2

2 2

i j k i j k i j k

i j k i j k i j k i j k i j k i j k

T T TT T T

x x x h

T T T T T T

h h

− +

− + − +

− + ∂ ∂ ∂+ + = + ∂ ∂ ∂ 

− + − +
+

 (16) 

where Ti j k = T (x1i, x2j, x3k, t), Ti−1, j, k = T (x1i−1, x2j, x3k, t) etc. 
Using the explicit scheme of FDM one obtains the following approximation  

of equation (7) 
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From equation (17) results that 
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or 
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where 
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It should be pointed out that for explicit scheme of FDM the stability criterion 
should be formulated [5]. 

4. Results of computations 

The biological tissue domain of dimensions 0.01 m × 0.01 m (L = 0.01 m) has 
been considered. Initial temperature of tissue equals T0 = 37oC. The following 
input data have been taken into account: λ = 0.75 W/(mK), c = 3⋅106 J/(m3K),  
GB = 0.0005 1/s, cB = 3.9962 J/(m3K), TB = 37oC, Qm = 245 W/m3. 

On the upper boundary x3 = L/2, −L/2 ≤ x1 ≤ L/2, −L/2 ≤ x2 ≤ L/2 the Dirichlet 
condition in the form 
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has been assumed - Figure 1. In equation (21) Tmax = 60oC, Tb = 37 °C. On the re-
maining part of the boundary the constant temperature Tb = 37oC can be accepted. 
 

 
Fig. 1. Boundary condition on the upper surface of the domain considered 
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The domain has been divided into 1000 internal cells (10 × 10 × 10) - Figure 2, 
time step: ∆t = 0.1 s. Figure 3 illustrates heating curves at the point (0, 0, 0) for  
τ = 0 and τ = 20 s. In Figure 4 the temperature distribution for τ = 20 s (left hand 
side) and τ = 0 s (right hand side) for times 10, 20 and 30 s in the section 
x1 = 0 is shown. 
 

 
Fig. 2. Discretization 

 

Fig. 3. Heating curves at the point (0, 0, 0) 
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Fig. 4. Temperature distribution for t = 10 s, t = 20 s and t = 30 s (τ = 20, τ = 0) 
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