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Abstract. This paper concerns axisymmetric free vibration of annular plates of stepped 
thickness resting on Winkler elastic foundation. Exact solution to vibration problem was 
obtained by dividing of considered plate into uniform annular plates and by using  
the Green’s function method. Numerical examples are presented. 

Introduction 

The problems of the free vibration of circular and annular plates of stepped 
thickness have been the subject of many papers [1-5]. Solutions to free vibration 
problems of stepped-thickness plates in papers [1, 2] were obtained by using finite 
element method and optimized Rayleigh-Ritz method. In articles [3, 4] a closed 
form solution to considered vibration problems was obtained by using Green’s 
function method. The vibration problems of circular plates resting on elastic foun-
dation have been investigated also by many authors, (e.g. [5-7]). The authors  
of article [5] obtained the solution by using the Galerkin’s method. In paper [7]  
a two-parameter model was used to represent the foundation. In article [6] circular 
plate on elastic foundation was modeled as a series of simply supported annular 
plates resting on supporting springs along their common edges. 

The present paper deals with a free vibration problem of stepped annular plates 
resting on Winkler elastic foundation. Exact solution to considered problem  
is obtained by dividing of the stepped plate into uniform annular plates. Character-
istic equation is obtained in analytical form by using the Green’s function method. 
Formulation and solution to the problem take into account arbitrary finite number 
of uniform plates composing the stepped plate. Analytical solution to presented 
vibration problem is used to perform numerical analysis of an influence of parame-
ters characterizing the system on its natural frequencies. Numerical examples pre-
sented here deal with stepped annular plates composed of two uniform plates. 
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1. Formulation and solution to the problem 

Consider an annular plate resting on Winkler elastic foundation. Thickness  
of a plate is varying stepwise along (n – 1) concentric circles as schematic shown 
in Figure 1. These circles mark out n plate elements - uniform annular plates  
of thickness hj and radii aj-1, aj, (aj-1 < aj, j = 1,...,n). 
 

 
Fig. 1. A stepped annular plate resting on Winkler elastic foundation 

Free vibration of j-th plate element is governed by differential equation: 
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where wj = wj(r, t) is a transverse displacement of j-th plate, r, t - radial and time 
variable, Dj = Ej hj

3 / [12 (1 - νj
2)] - bending rigidity of plate, Ej - Young modulus, 

νj - Poisson ratio, ρj – mass per unit volume, kj - stiffness coefficient of the founda-
tions over a region of j-th plate, sj = sj(t) - the shearing force, mj = mj(t) - bending 
moment, δ( ) is the Dirac delta function. It is also assumed that s0 = m0 = sn = 
= mn = 0. 

Equation (1) is completed by boundary conditions and continuity conditions. 
The boundary conditions can be written symbolically in the form: 

 [ ] 0
0

00 ==ar
wB ,   [ ] 0== narnn wB  (2) 

and continuity conditions are: 
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,       j = 1,…, n – 1    (3) 

In case of free harmonic vibration of the system one assumes: 

 ( ) ( ) terWtrw ωi
jj , = ,   te ωi

jj Ss = ,   te ωi
jj Mm =  (4) 
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where ω is an eigenfrequency of the system. Introducing simultaneously dimen-
sionless quantities: 

 jj / arr = ,   jij,ij, / arr = ,   jjj / aWW =  (5) 

and taking into account (4), equation (1) and the continuity conditions take the 
form: 
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where: ( )j4
j

4
j K−−∇= �L , ∇ 2 = d2/dr2 + (1/r) d/dr, j

4
j

2
jj

4
j / Dah� ωρ= , j

4
jjj /K Dak= , 

αj = aj-1/aj, �j = Dj−1/Dj, jjjj /SS Da= , jjj /MM D= , j = 1,...,n. 

Applying to equations (6) the Green’s function method and using properties  
of Dirac delta function allow us to obtain a set of equations: 
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where dashes over symbols r, W, S, M are omitted. Gj denotes the Green’s function 
of differential operator L j. Function Gj is defined over region [αj, 1]×[αj, 1], 
(0 < αj < 1). Green’s functions of differential operators occurring in vibration prob-
lems of uniform annular plates were derived in papers [3, 4, 8, 9]. 

Characteristic equation to considered free vibration problem of stepped annular 
plate resting on elastic foundation is obtained by using equations (8) in continuity 
conditions (7). Using equations (8) in conditions (7) a system of equation is ob-
tained. This system can be written in a matrix form: 

 A X = 0 (9) 

where [ ] T

nn 1111 M
~

S
~

...M
~

S
~

−−=X  is the vector of unknown quantities, 

A = [A ji]1 ≤ j,i ≤ n-1 is a square-matrix where: 
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Equation (9) has non-trivial solution if and only if: 

 det A = 0 (11) 

Equation (11) is the characteristic equation of the considered vibration problem. 

2. Green’s function 

The Green’s function G(r,ξ), corresponding to an annular plate resting on  
Winkler elastic foundation is a solution of the equation:  

 ( ) ( ) ( ) ( )ξδξξ −=−−∇ r
r

,rG�,rG
1

K44  (12) 

This function satisfies, with respect to variable r, boundary conditions along the 
plate’s edges: r = a and r = b. For example, the conditions for the annular plate 
with free edges are: 
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,  r = a,  r = b (13) 

The solution of equation (12) can be written in the form of a sum [4]: 

 G(r,ξ) = G0(r,ξ) + G1(r,ξ) H(r – ξ) (14) 
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where G0(r,ξ) and G1(r,ξ) are solutions of a homogeneous equation: 

 ( ) ( ) ( ) 044 =−−∇ ξξ ,rGK�,rG ii ,  (i = 0, 1) (15) 

Moreover, G1(r,ξ) satisfies following conditions [8]: 
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Once the function G1 is known, G0 must be such function that G given by equation 
(14) satisfies the boundary conditions. 

To solve the equation (15), two cases are considered: 

Case 1: �4 – K > 0: 

Denoting K�� −= 44 , equation (15) can be rewritten as [10]: 

 ( )( ) ( ) 02222 =−∇+∇ ξ,rG�� i  (17) 

and general solution u(r) of equation (17) can be presented in the form: 

 ( ) ( ) ( ) ( ) ( )�rKc�rIc�rYc�rJcru 04030201 +++=  (18) 

where J0, Y0 are Bessel functions and I0, K0 are modified Bessel functions. Using 
(18) and the conditions (16), we find the function G1(r,ξ) as [5]: 

 ( ) ( ) ( ) ( ) ( )[ ΩΩξΩξΩ
Ω

ξ rKIKrI,rG 000021
2

1 −=  

     ( ) ( ) ( ) ( )( )]ΩΩξΩξΩπ
rYJYrJ 00002

−+   (19) 

 
Hence, on the basis of equations (14) and (18), we have 

   ( ) ( ) ( ) ( ) ( ) ( ) ( )ξξξ −++++= rH,rG�rKC�rYC�rIC�rJC,rG 104030201   (20) 

The constants C1, C2, C3, C4, are determined by using boundary conditions.  
In the considered case, the constants for classical boundary conditions are pre-
sented in reference [9]. 

Case 2: �4 – K < 0: 

Introducing 44 �K� −=  in equation (15), we can rewritten the equation in  
the form: 

 ( )( ) ( ) 02222 =−∇+∇ ξ,rG�� iii  (21) 
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and the general solution u(r) of the equation is: 

 ( ) ( ) ( ) ( ) ( )�rKc�rIc�rKc�rIcru iiii −+−++= 04030201   (22) 

The Bessel functions I0 and K0 of the complex arguments can be changed  
by Kelvin functions ber, bei, ker, kei, of a real argument by using the following 
relationships [10]:  

 ( ) ( ) ( )xbeiixberixI ±=±0 ,  ( ) ( ) ( )xkeiixkerixK ±=±0  (23) 

Taking into account these relationships in equation (23) we obtain a real valued 
function for the real argument: 

 ( ) ( ) ( ) ( ) ( )�rkerc�rkeic�rberc�rbeicru 4321 +++=  (24) 

Using the conditions (16), we find the function G1(r,ξ) in the form: 

 ( ) ( ) ( ) ( ) ( )[ ΩξΩΩξΩ
Ω

ξ berrkeikerrbei,rG −=
21

1
 

     ( ) ( ) ( ) ( )]ΩξΩΩξΩ beirkerkeirber −+   (25) 
 
 The general solution of equation (12), we obtain from equation (14) and in  
the considered case can be written as: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )ξξξ −++++= rHrG�rC�rkeiC�rberC�rbeiCrG ,ker, 14321  (26) 

Similarly as in the case 1, the constants C1, C2, C3, C4, are determined by using 
boundary conditions. 

3. Numerical examples 

Presented here numerical examples deal with stepped annular plates having 
both edges free (r = a, r = b, b < a). The plate is subdivided into two uniform an-
nular plates: an annular plate of thickness h1 and radii r = b, r = c and an annular 
plate of thickness h2 and radii r = c, r = a (b < c < a). In this case, characteristic 
equation to vibration problem (11) has the form: 
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where α2 = c/a, �2 = D1/D2, Gj(rj,ξj) is a Green’s function defined over region 
[αj, 1]×[αj, 1] (j = 1, 2). It is also assumed: ρ1 = ρ2, ν1 = ν2 and E1 = E2. Then 
�2 = α3, where α = h1/h2. 
 

 

Fig. 2. Values of non-dimensional frequency parameter 4
2

42
2,2 / Dah� i ωρ=  (i = 1, 2)  

as a function of parameter α = h1/h2; b/a = 0.4, c/a = 0.7, ν = 0.3 

Using equation (27) numerical analysis of influence of parameters characteriz-
ing the system on its natural frequency was performed. Curves in Figure 2 present 

values of frequency parameter 4
2

42
2,2 / Dah� i ωρ=  (i = 1, 2) for free-free 

annular plate as a function of ratio α = h1/h2 and for various values of foundation’s 
parameter K2 = K. Results were obtained for b/a = 0.4, c/a = 0.7, ν = 0.3. We can 
observe both the parameters α and K have significant effect on natural frequencies 
of stepped plate. 

Conclusions 

In this paper an exact solution to the problem of free vibration of a stepped  
annular plate resting on elastic foundation is presented. The formulation of  
the problem consists of the differential equations of motion of the plates, conti-
nuity conditions and boundary conditions. The solution to vibration problem is 
obtained by dividing of the stepped plate into uniform annular plates. Exact solu-
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tion is obtained by using the Green’s function method. The formulation and solu-
tion to the problem take into account an arbitrary number of uniform plates.  
Presented numerical example shows an influence of selected parameters characte-
rizing the system on its natural frequencies. 
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