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Abstract. In the paper the application of the gradient method coupled with the boundary 
element method for numerical solution of the inverse parametric problem is presented.  
On the basis of the knowledge of temperature field in the domain considered the tempera-
ture dependent thermal conductivity is identified. The non-steady state is considered and 1D 
problem is discussed. In the final part of the paper the results of computations are shown. 

1. Direct problem 

The following boundary initial problem is considered 
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where c is the volumetric specific heat, λ(T ) is the thermal conductivity, T, x, t 
denote temperature, spatial co-ordinate and time, qb is the boundary heat flux  
and T0 is the initial temperature.  

In order to solve the problem (1) by means of the boundary element method  
the Kirchhoff transformation is introduced [1, 2] 
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and then the governing equations (1) take a form 
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where U0 = U (T0 ). We assume that 

 ( ) 2
1 2 3T b b T b Tλ = + +  (4) 

where b1, b2, b3 are the coefficients. 
If the direct problem is considered then all geometrical and thermophysical pa-

rameters appearing in the mathematical model are known.  

2. Sensitivity coefficients 

In this chapter the sensitivity analysis of function U (x, t ) (c.f. governing equa-
tions (3)) with respect to the coefficients be, e = 1, 2, 3 (c.f. equation (4)) is dis-
cussed. Here the direct approach is applied [3, 4]. Additionally, it is assumed that 
the volumetric specific heat c is a constant value. 

Differentiation of equations (3) with respect to be, e = 1, 2, 3 gives 
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Because (c.f. equation (3)) 
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so 
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where 
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We calculate 
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this means 
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Finally, the equations (7) can be written in the form 
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3. Boundary element method 

The basic problem (3) and additional problems (13) connected with the sensi-
tivity functions have been solved by means of the first scheme of the boundary 
element method. This method is presented for the following equation 
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where a (T ) = λ (T ) / c and for the basic problem (3): F (x, t) = U (x, t), Q (x, t) = 0, 
while for the additional problems (13): F (x, t) = Ze (x, t) and 
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The time grid 0 1 1... ...f f Ft t t t t−< < < < < < < ∞ with constant step 1f ft t t −∆ = −   
is introduced. The boundary integral equation for transition 1f ft t− →  has the  
following form [1, 5, 6] 
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where af is the mean value of thermal diffussivity for interval time 1,f ft t−   , ξ is 

the observation point. In equation (16) ( )* , , ,fF x t tξ  is the fundamental solution 

[1, 5, 6] 
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( )* , , ,fJ x t tξ  is the heat flux resulting from the fundamental solution 
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and 

 ( ) ( ),
,

F x t
J x t

x

∂
= −

∂
 (19) 

In numerical realization of the BEM the constant elements with respect to time 
are introduced 
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and then the equation (16) takes a form 
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or 
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and 
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while 
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It should be pointed out that the integrals (23), (24) can be calculated in analytical 
way [1, 6]. 
For 0+ξ →  and L−ξ →  one obtains the following system of equations 
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which can be written in the matrix form 
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This system of equations allows to find the “missing” boundary vales of F or J. 
The values of function F at the internal points ξ are calculated using the formula 
(c.f. equation (22)) 
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4. Gradient method of inverse problem solution 

It is assumed that the coefficients b1, b2, b3 in equation (4) are unknown. To 
solve the inverse problem formulated, the additional information is necessary. Let 
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are the known (measured) temperatures at the points xi for times t f. 
The following least squares criterion has been taken into account [4] 
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The necessary condition of optimum of function S leads to the following system 
of equations 
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where k
lb  for k = 0 are the arbitrary assumed values of parameters bl, while for 

k > 0 they result from the previous iteration. 

Function ( ),f f
i iU U x t=  is expanded into the Taylor series 
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are the sensitivity coefficients. 
Putting (34) into (32) one has (l = 1, 2, 3) 
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or 
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where l = 1, 2, 3, while k = 0, 1, ..., K is the number of iteration. 
The system of equations (37) can be written in the matrix form 
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5. Results of computations 

The plate of thickness L = 0.05 m has been considered. On the left surface  
x = 0 the Neumann condition qb = 9.2⋅105 W/m2 is assumed, on the right surface 
x  = L the zero heat flux q(L, t ) = 0 has been accepted. Initial condition T0 = 100°C 
has been also given (equations (1)). Additionally, it was assumed that  
c = 4⋅106 J/(m3

 K) and b1 = 52, b2 = − 0.02, b3 = − 0.00001 (equation (4)). 

 

 

Fig. 1. Heating curves 

The basic problem has been solved by means of the boundary element method. 
The domain has been divided into 100 internal cells and �t = 1 s. In Figure 1  
the heating curves at the points 1 − x1 = 0, 2 − x2 = 0.01 m and 3 − x3 = 0.02 m are 
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shown. Figures 2, 3, 4 illustrate the courses of sensitivity functions at the same 
points. 
 

 
Fig. 2. Sensitivity function Z1 

 
Fig. 3. Sensitivity function Z2 

Next, the inverse problem has been considered. The parameters b1, b2, b3 have 
been identified under the assumption that 0

1 51,b =  0
2 0,017,b = −  0

3 0,000018.b = −  
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In the first variant of computations only one heating curve marked by 1 in Figure 1 
is taken into account (curves marked by 1 in Figures 5, 6, 7), while in the second 
variant of computations three heating curves (Figure 1) are taken into account 
(curves marked by 3 in Figures 5, 6, 7). 

 

 

Fig. 4. Sensitivity function Z3 

 

Fig. 5. Identification of b1 
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Fig. 6. Identification of b2 

 

Fig. 7. Identification of b3 

It is visible, that the iteration process is convergent, but even for the initial  
values of parameters 01 ,b  0

2b  and 0
3b  close to the exact solution the number  

of iterations is very big. The effectiveness of the algorithm proposed considerably 
improves when three heating curves have been taken into account. 
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Summing up, the algorithm proposed constitutes the effective tool of such  
inverse problem solution but the number of points for which the temperature 
course is known has an essential effect on the number of iterations. 
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