
Scientific Research of the Institute of Mathematics and Computer Science

SERIALIZATION OF INPUT AND OUTPUT DATA TRANSFERS
IN PARALLEL STRUCTURES

Henryk Piech, Michał Styś

Institute of Mathematics and Computer Science, Czestochowa University of Technology, Poland
email: hpiech@adm.pcz.czest.pl

Abstract. We propose the new interpretation of feature named “serialization” as a charac-
teristic of scheduling algorithms. In our interpretation serialization would be the property
of algorithm referring to accumulating date in processes as well as to summary procedure
of sending date to chosen place (processor or process) directly before their utilization.
We want to practically prove that serialization can help us to enlargement the effectiveness
of scheduling procedures.

Introduction

Communication in a distributed and parallel environment is seen as a necessity
relating to an additional loss of time, but necessary to obtain the final effect con-
sisting in the effective shortening of global processing time [1]. Communication is
related to the establishment of connections and the quantity of information which
is supposed to be transmitted in individual connection sessions [2]. An essential
thing is to prepare and present data in such a way that it will be possible to send it
conveniently (the best as a series) and at one time in the largest chunks (serializ-
able) [3]. The more frequent and fragmented this process is, the more time it will
take. It is even related to establishing the procedures of connections.

1. Indexes and examples of serialization in parallel processes

The possibility of establishing connections between many nodes (processors) is
profitable and it can favourably influence the shortening of communication time.
Certainly, the number of connections and information transfers depends on the
realization algorithm of concrete task but also on a realization algorithm of trans-
fer, i.e. the communication algorithm (Fig. 1). The fork and message transfer of
threads to processors 2 and 3 follow the realization of process pr1,1. The results of
the pr2,1 process will determine the data of the pr1,5 process. Thus, they could to
be sent to processor 1 at moment t1 (Fig. 1b). However, it is not the optimal vari-
ant, because it leads to additional waste of time.

Please cite this article as:
Henryk Piech, Michał Styś, Serialization of input and output data transfers in parallel structures, Scientific Research of
the Institute of Mathematics and Computer Science, 2007, Volume 6, Issue 1, pages 241-252.
The website: http://www.amcm.pcz.pl/

H. Piech, M. Styś 242

a)

Variant 1

processor1 pr1,1 pr1,2 pr1,3 pr1,4 pr1,5 t

processor2 pr2,6 pr2,7 t

processor3 p3,8 p3,9 t

processor4 p4,10 t

transfer moments t

 t1 t2t3 t4 t5
pri, j - process with number “j” realized on i-th processor
ti – potential moments of realization of information transfer to the 1-st processor

b)

Variant 2

processor1 pr1,1 pr1,2 pr1,3 pr1,4 pr1,5 t

processor2 p2,6 pr2,7 t

processor3 p3,8 p3,9 t

processor4 p4,10 t

transfer moments t

 t1 t2t3 t4 t5

Fig. 1. Realization ways of information transfer between processors (variant 1, variant 2)

In variant 1 the moment when all data for the pr1,5 process will be determined is
anticipated (the moment t5). Then, a connection with processor 1 is established
and the transfer of data series from the other processors occurs. This feature will
be called the series creation capability (serializable). It relates to the executed task

Serialization of input and output data transfers in parallel structures 243

algorithm in combination with the communication algorithm. The series creation
capability can be expressed by the number of data fed into a given process in rela-
tion to the number of independent processes which create these data:

 SLA = 1/mp*∑
=

m

1i

{1/n(i)*∑
=

δ
)i(n

1j

)j,i(D)j,i(} (1)

where:
 SLA - the series creation capability: serialization factor,
D(i,j) - data number determined in uniform or autonomous units and transferred

directly from the j-th processor to the i-th process,
 mp - number of all processes,
 n(i) - number of processors feeding information to i-th process,
δ(i,j) - transfer factor.

Thus, it is not significant whether the data come from a single or many
processes, however, it is important that the data be directly fed before the initiation
of the i-th process. If the data is transferred earlier than directly before the initia-
tion of a given process then they are not taken into consideration in the formula
(1). It is taken into consideration thanks to the transfer factor (i,j).

 1, if the data transfer from the j-th processor to the i-th process

 δ(i,j) = directly precedes the given process,
 0, if the data transfer from the j-th processor to the i-th process is

earlier or if the process is realized on the j-th processor.

Example 1

The situation presented in Figure 1a and 1b is considered.

Variant 1

Table 1
Values of transfer factors δδδδ(i,j)

 1proc. 2proc. 3proc. 4proc. 5proc. 6proc. 7proc. 8proc. 9proc. 10proc.
processor1 0 0 0 0 0 1 0 1 0 0
processor2 0 0 0 0 1 0 0 0 0 0
processor3 0 0 0 0 1 0 0 0 0 1
processor4 0 0 0 0 1 0 0 0 0 0

Table 2

Number of processors feeding information to the given process n(i)

 1proc. 2proc. 3proc. 4proc. 5proc. 6proc. 7proc. 8proc. 9proc. 10proc.

n(i) 0 0 0 0 3 1 0 1 0 1

H. Piech, M. Styś 244

Table 3

Data number transferred to successive processes D(i,j)

 1proc. 2proc. 3proc. 4proc. 5proc. 6proc. 7proc. 8proc. 9proc. 10proc.
processor1 n+2 n n n n n 0 n 0 0
processor2 0 0 0 0 3 m m 0 0 0
processor3 0 0 0 0 n 0 0 n+1 n+1 2
processor4 0 0 0 0 n 0 0 0 0 0

Variant 2

Table 4
Values of transfer factors δδδδ(i,j)

 1proc. 2proc. 3proc. 4proc. 5proc. 6proc. 7proc. 8proc. 9proc. 10proc.
processor1 0 0 0 0 0 1 0 1 0 0
processor2 0 0 0 0 0 0 0 0 0 0
processor3 0 0 0 0 0 0 0 0 0 1
processor4 0 0 0 1 0 0 0 0 0 0

Table 5

Number of processors feeding information to the given process n(i)

 1proc. 2proc. 3proc. 4proc. 5proc. 6proc. 7proc. 8proc. 9proc. 10proc.
n(i) 0 0 0 1 0 1 0 1 0 1

Introducing the exemplifying data to the formula (1) we receive:

SLAvariant1 = 1/mp*∑
=

m

1i

{1/n(i)* ∑
=

δ
)i(n

1j

)j,i(D)j,i(} = 1/40*(6*n+4*m+11)

SLAvariant2 = 1/mp*∑
=

m

1i

{1/n(i)* ∑
=

δ
)i(n

1j

)j,i(D)j,i(} = 1/10(m+n+2) = 1/40*(4*n+4*m+8)

 (2)

Comparing both serialization factors apart from the obvious inference:

SLAvariant1> SLAvariant2

the pace of the serialization factor changes can be determined by the increase in
the value of m and n data numbers (Fig. 2).

2. Application of analysis of the series creation capability
with reference to linear transportation algorithms

Serialization of input and output data transfers in parallel structures 245

It is possible to divide the transportation algorithm into processes depending on
the data sets used in these processes. Such a segregation of processes is effective
and is conducive to the minimization of interprocessor communication. Thus, it is
possible to separate, for example, the following processes [4]:
1. searching for the minimal unit values of carriage costs in demand columns

(1proc.),
2. determination of a transport order (2proc.),
3. realization of “transports” (3proc.),
4. verification of a distribution end (4proc.),
5. division into “priority” and “non-priority” classes (5proc.),
6. determination of a correction quantity in the priority class (6proc.),
7. correction of unit carriage costs of the priority class (7proc.) and return to

the first process.

1
3

5
7

9

S1S3S5S7S9

1
1,05
1,1

1,15

1,2
1,25

1,3

1,35

1,4

1,45

1,5

m

n

Relationship between serialization factor SLA and data number

1,45-1,5

1,4-1,45

1,35-1,4

1,3-1,35

1,25-1,3

1,2-1,25

1,15-1,2

1,1-1,15

1,05-1,1

1-1,05

Fig. 2. Relationship between serialization factor and number of transferred data
(expressed in their sizes)

The data for process 1 is the matrix size of the unit carriage costs and elements
of this matrix (m x n) + 2, where: m is the number of suppliers and n is the number
of receivers.The data for process 2 are n vectors with the number of elements equal
to m. Forking this process to the n subprocesses (2.1-2.n), let us deliver the m+1
data to each of them. Process 3 is the use of the results from the subprocesses (2.1-
2.n) and let us deliver nx(m+2)+1 data to it. The next process (process 4) requires
information related to commodities not transferred, which is registered in the vec-
tor with length of n ((n+1) data). The 5-th process requires full information on
carriages (it uses (m+1)x(n+1)+2 data). The 6-th process can also be forked into 6
subprocesses (6.1-6.n). Each of the processes use (m+1) data. In process 7 the unit
carriage costs in the priority group are corrected. The average number of data can

H. Piech, M. Styś 246

be estimated as m/2*n+1. The graphical picture of the transportation algorithm can
be presented as it is in Figure 3.

 1 2.1 3 4 5 6.1 7...numbers of processes
 t

 2.2 6.2 7.1

 2.3 6.3 7.2

 7.[m/2] activity of processors

2.n 6.n

Fig. 3. Distribution sample of processes in the transportation task according

to the above description

The transfer factors and the ranges of transferred data for the example from
Figure 3 are described in Tables 6 and 7.

Table 6

Transfer factors δδδδ(i,j)

 1proc. 2y_proc. 3proc. 4proc. 5proc. 6proc. 7proc.

processor1 0 1 0 0 0 1 0

processor2 0 0 1 0 0 0 1

................ 0 0 1 0 0 0 1

processor n 0 0 1 0 0 0 1

Table 7

Transferred data D(i,j)

 1proc. 2y_proc. 3proc. 4proc. 5proc. 6proc. 7proc.

processor1 mxn+2 m+1 m+n+2 n+1 (m+1)x(n+1)+2 m+1 m/2*n+1

processor2 0 0 m+1 0 0 0 m/2*n+1

................ 0 0 m+1 0 0 0 m/2*n+1

processor n 0 0 m+1 0 0 0 m/2*n+1

The serialization factor for the exemplifying variant of communication

amounts to:

Serialization of input and output data transfers in parallel structures 247

 SLAexample1 = 1/mp*∑
=

m

1i

{1/n(i)*∑
=

δ
)i(n

1j

)j,i(D)j,i(} = 2(m+n)/(5+2n) (3)

1 2 3 4 5 6 7 8 9
S1

S3
S5
S7
S9

0,0

5,0

10,0

15,0

20,0

m

n

15,0000-20,0000

10,0000-15,0000

5,0000-10,0000

0,0000-5,0000

Fig. 4. Relationship between serialization factors and data numbers (expressed in their sizes)

The next example is the search algorithm of the shortest path between two
points in an undirected graph. The course of this problem can be divided into the
following processes:
1. searching for the node in the nearest distance (v) from the current node (starting

point s) (1proc.),
2. verification of the end (the chosen node is the end-point v = t) (2proc.),
3. addition of the found edge to the set of selected edges (3proc.),
4. searching for the node in the nearest distance from the already selected set and

return to process 2 (4proc.).
The graphical picture of the search algorithm of the shortest path can be shown

in the following way (Fig. 5).
The transfer factors with taking into consideration the transfer iteration in the

process coded “4” to process “2”, i.e. after the addition of the successive found
edge, are presented in Table 8.

H. Piech, M. Styś 248

 1 2 3 4.1 2 3 4.1 2 3 4 ……… 4.1 2 process

 processor1 t

 4.2 4.2 4.2
 processor2

 4.3 4.3 4.3 processor3

 4.4 .
 .
 .
 4.k+1 processor(k+1)

Fig. 5. Distribution of processes in the problem of searching for the shortest path between

points s-t, where: k - the number of edges connecting vertices s and t

Table 8
Transfer factors δδδδ(i,j)

 1proc. 2proc. 3proc. 4proc_y

processor1 0 0 0 0

processor2 0 1 0 1

…… 0 1 0 1

processor k 0 0 0 1

After finding out the successive vertex, the next processor is activated to which

information on its distance from the remaining vertices is transferred. Table 9
illustrates it. Feeding the neighbourhood matrix with the nxn size, where n is
the number of vertices, and codes of vertices of the start and end of the shortest path
to process 1 is required. Process 2 requires feeding the codes of the current and
last vertex. The addition of the found edge to the current path structure takes place
in process 3. The data number is equal one (it is only the code of vertex). The dis-
tances from the created structure are used in process 4, i.e. the n-elements vector as
well as the vertex code and the graph size in the activated processor are available.

Table 9
Values of transferred data D(i,j)

 1proc. 2proc. 3proc. 4proc_y

processor1 nxn+4 2 1 n+2

processor2 0 2 0 n+2

…… 0 2 0 n+2

processor k 0 0 0 n+2

The value of the serialization factor can be estimated as follows:

Serialization of input and output data transfers in parallel structures 249

 SLAexample1 = 1/mp*∑
=

m

1i

{ 1/n(i)*∑
=

δ
)i(n

1j

)j,i(D)j,i(} = 2/1*(n+2)+2/2*(n+2)+ ...

 +2/(k)* (n+2)/(2k*(1+2+...+k)) = (n+2)*(1+1/2+...+1/k)/ (k*(1+2+...+k)) (4)

Reference to the number of processors does not fully reflect the ability to create
a series. Another way would be to relate to the number of transfers. This number
will be associated with the connection sessions but not with the number of pro-
cesses. In that case, the serialization factor could be determined by the following
expression:

 SLI = 1/lp∑
=

lp

1i

)i(Dp (5)

where:
 lp - number of connection sessions,
Dp(i) - data number transferred during i-th session.

SLIexample1=1/lp∑
=

lp

1i

)i(Dp =1/4*(n-1)(m/2*n+3*m+4)

SLIexample2=1/lp∑
=

lp

1i

)i(Dp =1/4*(n+4)*(1+k)

1 2 3 4 5 6 7 8 9
S1

S3
S5

S7
S9

0

10

20

30

40

50

k

n

Relationship between serialization factor SLA and data number

40-50

30-40

20-30

10-20

0-10

Fig. 6. Relationship between serialization factors and input data parameters

H. Piech, M. Styś 250

1 2 3 4 5 6 7 8 9
S1

S3
S5
S7
S9

-2000,0

0,0

2000,0

4000,0

6000,0

8000,0

10000,0

m-data parameter

n-data parameter

Values of serialization factor SLI in transportation task

8000,0-10000,0

6000,0-8000,0

4000,0-6000,0

2000,0-4000,0

0,0-2000,0

-2000,0-0,0

Fig. 7. Example 1 - relationship between serialization factor and data parameters

It is possible to select the level (alpha) of symmetrical distribution of the func-
tion form taking both serialization elements (SLA i SLI) into consideration:

 SL=alpha*SLA+(1-alpha)*SLI (6)

Example 1 Example 2

alpha = 0.4 alpha = 0.001
alpha = 0.7 alpha = 0,0015
alpha = 0.9 alphasym = 0.66 alpha = 0,002 alphasym = 0.0016

1 2 3 4 5 6 7 8 9
S1
S3
S5
S7S9

0
20
40
60
80

100
120
140

k - number of edges
between
s and t

n - number of vertices

Values of serialization factors SLI in fuction of data number in
searching for the shortest path

120-140

100-120

80-100

60-80

40-60

20-40

0-20

Fig. 8. Example 2 - relationship between serialization factor and data parameters

Serialization of input and output data transfers in parallel structures 251

1 2 3 4 5 6 7 8 9
S1

S3
S5

S7
S9

0,000

40,000

80,000

120,000

1 2 3 4 5 6 7 8 9
S1

S4

S7
0,00

5,00

10,00

15,00

20,00

1 2 3 4 5 6 7 8 9
S1

S4
S7

0,000

20,000

40,000

60,000

1 2 3 4 5 6 7 8 9
S1

S4

S7
0,000

20,000

40,000

60,000

1 2 3 4 5 6 7 8 9
S1

S4
S7

0,00

5,00

10,00

15,00

20,00

1 2 3 4 5 6 7 8 9
S1

S4
S7

0,00

5,00

10,00

15,00

20,00

Fig. 9. Operations heading for equalization (middle figures) of influences of SLA

and SLI elements (from formula (6))
 The symmetrization (alphasym � Figure 10) of the levels of SLA and SLI compo-
nents leads to the equalization of property influences which the components repre-
sent. If the alpha level exceeds 0.5 then the influence of the first component, i.e.
SLA from the formula (6) was increased. The first component characterizes
the algorithm capability to the accumulation of series in separate nodes preceding
a direct use of data. If the alpha level is smaller than 0.5 then the influence of
the second component (SLI) was increased, i.e. the component which reflects
the algorithm capability to collect and transfer of data from various processors
directly before the use of data. An increase in the participation of one of the com-
ponents to reach the balance (e.g. the increase in alpha value) is a consequence
of the operation heading for a complement of structural lacks of serializable pro-
perties of concrete algorithm in a given range.

H. Piech, M. Styś 252

alpha>0.5 ⇒ SLA_was_too_small (participation of SLA was increased)
alpha=0 ⇒SLA_and_SLI_have_equal_influences (7)
alpha<0.5 ⇒SLI_was_too_small (participation of SLI was increased)

 equal level

 alpha↑⇒

 equal level

 alpha↓⇒

Fig. 10. Symmetrization of serialization components

Conclusions

1. In the existing multiprocessor hardware solutions and communication systems
operating them, serialization is a feature consisting in collecting data directly
before the realization of the process which uses them. It is often associated with
the capability and procedure to create presence backup containing these data
[5]. In our interpretation, the serialization would be an algorithm feature
relating to the data accumulation in processes as well as to the cumulative pro-
cedure of data transfer to the selected place (processor and process) directly
before their use.

2. As the algorithm research shows, as a rule, the influence of both SLA and SLI
components is essentially diverse (more than 40%). It results from the fact that
a greater diffusion of subprocesses is the reason for the intensification of diffu-
sion procedures and data collection. Simultaneously, it is conducive to a de-
crease in the degree of data accumulation procedures used.

3. Serialization characterizes the susceptibility of an algorithm to parallelization
or diffusion of its realization. Processing environment parameters indicate
whether it is more effective - to diffuse or to accumulate data (i.e. whether

Serialization of input and output data transfers in parallel structures 253

the realization of concrete algorithm in a given processing environment is effec-
tive).

4. Symmetrization of the serialization components (alpha level in Figure 9) allows
one to deterministically specify the participation of the accumulation of SLA
and the diffusion of SLI components in the given algorithm realization.
If the diffusion influence is greater than the accumulation influence then
alpha > 0.5, otherwise alpha < 0.5.

References

[1] Flynn M.J., Some computer organizations and their effectiveness, IEEE Trans. on Computers
1992, C21.

[2] Raghavan P., A statistical adversary for online algorithms, Discrete Mathematics and Theoretical
Computer Science, Springer-Verlag 1991.

[3] Sait S.M., Youssef H., VLSI Design Automation: Theory and Practice, McGrow-Hill Book Co.,
Europe 1995.

[4] Georges-Schleuter M., Explicit parallelism of genetic algorithms through population structures,
Problem Solving from Nature, Springer-Verlag, New York 1991.

[5] Valduriez P., Parallel Processing and Data Management, Chapman & Hall 1992.

[6] Aarts E.H., Bont F.M., Habers E.H.,Van Laarhoven P.J., Parallel implementation of the statistical
cooling algorithm, Integration, the VLSI Journal, 1986.

