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Abstract. We propose the new interpretation of feature named “serialization” as a charac-
teristic of scheduling algorithms. In our interpretation serialization would be the property  
of algorithm referring to accumulating date in  processes as well as to summary procedure 
of sending date to chosen place (processor or process) directly before their utilization.  
We want to practically prove that serialization can help us to enlargement the effectiveness 
of scheduling procedures. 

Introduction 

Communication in a distributed and parallel environment is seen as a necessity 
relating to an additional loss of time, but necessary to obtain the final effect con-
sisting in the effective shortening of global processing time [1]. Communication is 
related to the establishment of connections and the quantity of information which 
is supposed to be transmitted in individual connection sessions [2]. An essential 
thing is to prepare and present data in such a way that it will be possible to send it 
conveniently (the best as a series) and at one time in the largest chunks (serializ-
able) [3]. The more frequent and fragmented this process is, the more time it will 
take. It is even related to establishing the procedures of connections.  

1.  Indexes and examples of serialization in parallel processes  

The possibility of establishing connections between many nodes (processors) is 
profitable and it can favourably influence the shortening of communication time. 
Certainly, the number of connections and information transfers depends on the 
realization algorithm of concrete task but also on a realization algorithm of trans-
fer, i.e. the communication algorithm (Fig. 1). The fork and message transfer of 
threads to processors 2 and 3 follow the realization of process pr1,1. The results of 
the pr2,1 process will determine the data of the pr1,5 process. Thus, they could to 
be sent to processor 1 at moment t1 (Fig. 1b). However, it is not the optimal vari-
ant, because it leads to additional waste of time. 
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a) 
 
Variant 1 

processor1 pr1,1 pr1,2    pr1,3     pr1,4               pr1,5 t 
  
                                      

processor2 pr2,6       pr2,7 t 
 
 
processor3 p3,8 p3,9 t 
 
 
processor4 p4,10 t 
 
 
transfer moments t 
 
 t1       t2t3    t4 t5 
pri, j  - process with number “j” realized on i-th processor  
ti – potential moments of realization of information transfer to the 1-st processor 

 
b) 
 
Variant 2 

processor1 pr1,1 pr1,2        pr1,3              pr1,4              pr1,5 t 
 
                                      

processor2 p2,6       pr2,7 t 
 
 
processor3 p3,8 p3,9 t 
 
 
processor4 p4,10 t 
 
 
transfer moments t 
 
 t1       t2t3    t4  t5 

Fig. 1. Realization ways of information transfer between processors (variant 1, variant 2) 

In variant 1 the moment when all data for the pr1,5 process will be determined is 
anticipated (the moment t5). Then, a connection with processor 1 is established 
and the transfer of data series from the other processors occurs. This feature will 
be called the series creation capability (serializable). It relates to the executed task 
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algorithm in combination with the communication algorithm. The series creation 
capability can be expressed by the number of data fed into a given process in rela-
tion to the number of independent processes which create these data: 

  SLA = 1/mp*∑
=

m

1i

{1/n(i)*∑
=

δ
)i(n

1j

)j,i(D)j,i( }  (1) 

where: 
 SLA - the series creation capability: serialization factor, 
D(i,j) - data number determined in uniform or autonomous units and transferred 

directly from the j-th processor to the i-th process, 
 mp - number of all processes, 
 n(i) - number of processors feeding information to i-th process, 
δ(i,j) - transfer factor. 

Thus, it is not significant whether the data come from a single or many  
processes, however, it is important that the data be directly fed before the initiation 
of the i-th process. If the data is transferred earlier than directly before the initia-
tion of a given process then they are not taken into consideration in the formula 
(1). It is taken into consideration thanks to the transfer factor (i,j). 
 

 1, if the data transfer from the j-th processor to the i-th process  

         δ(i,j)  =     directly precedes the given process, 
  0, if the data transfer from the j-th processor to the i-th process is 

earlier or if the process is realized on the j-th processor. 
 
Example 1 

The situation presented in Figure 1a and 1b is considered. 
 
Variant 1 
 

Table 1 
Values of transfer factors δδδδ(i,j) 

 1proc. 2proc. 3proc. 4proc. 5proc. 6proc. 7proc. 8proc. 9proc. 10proc. 
processor1 0 0 0 0 0 1 0 1 0 0 
processor2 0 0 0 0 1 0 0 0 0 0 
processor3 0 0 0 0 1 0 0 0 0 1 
processor4 0 0 0 0 1 0 0 0 0 0 

 
Table 2 

Number of processors feeding information to the given process n(i) 

 1proc. 2proc. 3proc. 4proc. 5proc. 6proc. 7proc. 8proc. 9proc. 10proc. 

n(i) 0 0 0 0 3 1 0 1 0 1 
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Table 3 

Data number transferred to successive processes D(i,j) 

 1proc. 2proc. 3proc. 4proc. 5proc. 6proc. 7proc. 8proc. 9proc. 10proc. 
processor1 n+2 n n n n n 0 n 0 0 
processor2 0 0 0 0 3 m m 0 0 0 
processor3 0 0 0 0 n 0 0 n+1 n+1 2 
processor4 0 0 0 0 n 0 0 0 0 0 

 
Variant 2 
 

Table 4 
Values of transfer factors δδδδ(i,j) 

 1proc. 2proc. 3proc. 4proc. 5proc. 6proc. 7proc. 8proc. 9proc. 10proc. 
processor1 0 0 0 0 0 1 0 1 0 0 
processor2 0 0 0 0 0 0 0 0 0 0 
processor3 0 0 0 0 0 0 0 0 0 1 
processor4 0 0 0 1 0 0 0 0 0 0 

 
Table 5 

Number of processors feeding information to the given process n(i) 

 1proc. 2proc. 3proc. 4proc. 5proc. 6proc. 7proc. 8proc. 9proc. 10proc. 
n(i) 0 0 0 1 0 1 0 1 0 1 

 
Introducing the exemplifying data to the formula (1) we receive: 

SLAvariant1 = 1/mp*∑
=

m

1i

{1/n(i)* ∑
=

δ
)i(n

1j

)j,i(D)j,i( } = 1/40*(6*n+4*m+11) 

SLAvariant2 = 1/mp*∑
=

m

1i

{1/n(i)* ∑
=

δ
)i(n

1j

)j,i(D)j,i( } = 1/10(m+n+2) = 1/40*(4*n+4*m+8)  

   (2) 
 

Comparing both serialization factors apart from the obvious inference: 

SLAvariant1> SLAvariant2 

the pace of the serialization factor changes can be determined by the increase in 
the value of m and n data numbers (Fig. 2). 

2. Application of analysis of the series creation capability  
with reference to linear transportation algorithms 
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It is possible to divide the transportation algorithm into processes depending on 
the data sets used in these processes. Such a segregation of processes is effective 
and is conducive to the minimization of interprocessor communication. Thus, it is 
possible to separate, for example, the following processes [4]: 
1. searching for the minimal unit values of carriage costs in demand columns 

(1proc.), 
2. determination of a transport order (2proc.), 
3. realization of “transports” (3proc.), 
4. verification of a distribution end (4proc.), 
5. division into “priority” and “non-priority” classes (5proc.), 
6. determination of a correction quantity in the priority class (6proc.), 
7. correction of unit carriage costs of the priority class (7proc.) and return to  

the first process. 
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Relationship between serialization factor SLA and data number
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1,15-1,2

1,1-1,15
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Fig. 2. Relationship between serialization factor and number of transferred data  
(expressed in their sizes) 

The data for process 1 is the matrix size of the unit carriage costs and elements 
of this matrix (m x n) + 2, where: m is the number of suppliers and n is the number 
of receivers.The data for process 2 are n vectors with the number of elements equal 
to m. Forking this process to the n subprocesses (2.1-2.n), let us deliver the m+1 
data to each of them. Process 3 is the use of the results from the subprocesses (2.1-
2.n) and let us deliver nx(m+2)+1 data to it. The next process (process 4) requires 
information related to commodities not transferred, which is registered in the vec-
tor with length of n ((n+1) data). The 5-th process requires full information on 
carriages (it uses (m+1)x(n+1)+2 data).  The 6-th process can also be forked into 6 
subprocesses (6.1-6.n). Each of the processes use (m+1) data. In process 7 the unit 
carriage costs in the priority group are corrected.  The average number of data can 
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be estimated as m/2*n+1. The graphical picture of the transportation algorithm can 
be presented as it is in Figure 3.  

    1           2.1          3       4        5             6.1       7.................................................numbers of processes 
 t 

 
 2.2                                           6.2       7.1  
 
 2.3                                           6.3      7.2 

 
                                               7.[m/2] activity of processors 

 
 
 

2.n 6.n 

 
 

 
 

 
Fig. 3. Distribution sample of processes in the transportation task according  

to the above description 

The transfer factors and the ranges of transferred data for the example from 
Figure 3 are described in Tables 6 and 7.  

 
Table 6 

Transfer factors δδδδ(i,j) 

 1proc. 2y_proc. 3proc. 4proc. 5proc. 6proc. 7proc. 

processor1 0 1 0 0 0 1 0 

processor2 0 0 1 0 0 0 1 

................ 0 0 1 0 0 0 1 

processor n 0 0 1 0 0 0 1 

 
Table 7 

Transferred data D(i,j) 

 1proc. 2y_proc. 3proc. 4proc. 5proc. 6proc. 7proc. 

processor1 mxn+2 m+1 m+n+2 n+1 (m+1)x(n+1)+2 m+1 m/2*n+1 

processor2 0 0 m+1 0 0 0 m/2*n+1 

................ 0 0 m+1 0 0 0 m/2*n+1 

processor n 0 0 m+1 0 0 0 m/2*n+1 

 
The serialization factor for the exemplifying variant of communication  

amounts to: 
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 SLAexample1 = 1/mp*∑
=

m

1i

{1/n(i)*∑
=

δ
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1j

)j,i(D)j,i( } = 2(m+n)/(5+2n) (3) 
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Fig. 4. Relationship between serialization factors and data numbers (expressed in their sizes) 

The next example is the search algorithm of the shortest path between two 
points in an undirected graph. The course of this problem can be divided into the 
following processes: 
1. searching for the node in the nearest distance (v) from the current node (starting 

point s) (1proc.), 
2. verification of the end (the chosen node is the end-point v = t) (2proc.), 
3. addition of the found edge to the set of selected edges (3proc.), 
4. searching for the node in the nearest distance from the already selected set and 

return to process 2 (4proc.). 
The graphical picture of the search algorithm of the shortest path can be shown 

in the following way (Fig. 5). 
The transfer factors with taking into consideration the transfer iteration in the 

process coded “4” to process “2”, i.e. after the addition of the successive found 
edge, are presented in Table 8. 
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Fig. 5. Distribution of processes in the problem of searching for the shortest path between 

points s-t, where: k - the number of edges connecting vertices s and t 

Table 8 
Transfer factors δδδδ(i,j) 

 1proc. 2proc. 3proc. 4proc_y 

processor1 0 0 0 0 

processor2 0 1 0 1 

…… 0 1 0 1 

processor k 0 0 0 1 

 
After finding out the successive vertex, the next processor is activated to which 

information on its distance from the remaining vertices is transferred. Table 9  
illustrates it. Feeding the neighbourhood matrix with the nxn size, where n is  
the number of vertices, and codes of vertices of the start and end of the shortest path 
to process 1 is required. Process 2 requires feeding the codes of the current and 
last vertex. The addition of the found edge to the current path structure takes place 
in process 3. The data number is equal one (it is only the code of vertex). The dis-
tances from the created structure are used in process 4, i.e. the n-elements vector as 
well as the vertex code and the graph size in the activated processor are available. 
 

Table 9 
Values of transferred data D(i,j) 

 1proc. 2proc. 3proc. 4proc_y 

processor1 nxn+4 2 1 n+2 

processor2 0 2 0 n+2 

…… 0 2 0 n+2 

processor k 0 0 0 n+2 

 
The value of the serialization factor can be estimated as follows: 
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 SLAexample1 = 1/mp*∑
=

m

1i

{ 1/n(i)*∑
=

δ
)i(n

1j

)j,i(D)j,i( } = 2/1*(n+2)+2/2*(n+2)+ ...   

 +2/(k )* (n+2)/(2k*(1+2+...+k)) = (n+2)*(1+1/2+...+1/k)/ (k*(1+2+...+k))  (4) 

Reference to the number of processors does not fully reflect the ability to create 
a series. Another way would be to relate to the number of transfers. This number 
will be associated with the connection sessions but not with the number of pro-
cesses. In that case, the serialization factor could be determined by the following 
expression: 

 SLI = 1/lp∑
=

lp

1i

)i(Dp  (5) 

where:  
     lp - number of connection sessions, 
Dp(i) - data number transferred during i-th session. 

SLIexample1=1/lp∑
=

lp

1i

)i(Dp =1/4*(n-1)(m/2*n+3*m+4) 

SLIexample2=1/lp∑
=

lp

1i

)i(Dp =1/4*(n+4)*(1+k) 
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Fig. 6. Relationship between serialization factors and input data parameters 



H. Piech, M. Styś 250

1 2 3 4 5 6 7 8 9
S1

S3
S5
S7
S9

-2000,0

0,0

2000,0

4000,0

6000,0

8000,0

10000,0

m-data parameter

n-data parameter

Values of serialization factor SLI in transportation task

8000,0-10000,0

6000,0-8000,0

4000,0-6000,0

2000,0-4000,0

0,0-2000,0

-2000,0-0,0

 
Fig. 7. Example 1 - relationship between serialization factor and data parameters 

It is possible to select the level (alpha) of symmetrical distribution of the func-
tion form taking both serialization elements (SLA i SLI) into consideration: 

 SL=alpha*SLA+(1-alpha)*SLI  (6) 

Example 1 Example 2 

alpha = 0.4 alpha = 0.001 
alpha = 0.7 alpha = 0,0015 
alpha = 0.9 alphasym = 0.66        alpha = 0,002 alphasym = 0.0016 
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Fig. 8. Example 2 - relationship between serialization factor and data parameters 
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Fig. 9. Operations heading for equalization (middle figures) of influences of SLA  

and SLI elements (from formula (6)) 
 The symmetrization (alphasym � Figure 10) of the levels of SLA and SLI compo-
nents leads to the equalization of property influences which the components repre-
sent. If the alpha level exceeds 0.5 then the influence of the first component, i.e. 
SLA from the formula (6) was increased. The first component characterizes  
the algorithm capability to the accumulation of series in separate nodes preceding 
a direct use of data. If the alpha level is smaller than 0.5 then the influence of  
the second component (SLI) was increased, i.e. the component which reflects  
the algorithm capability to collect and transfer of data from various processors 
directly before the use of data. An increase in the participation of one of the com-
ponents to reach the balance (e.g. the increase in alpha value) is a consequence  
of the operation heading for a complement of structural lacks of serializable pro-
perties of concrete algorithm in a given range. 
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alpha>0.5  ⇒  SLA_was_too_small (participation of  SLA was increased) 
alpha=0 ⇒SLA_and_SLI_have_equal_influences (7) 
alpha<0.5  ⇒SLI_was_too_small (participation of  SLI was increased) 

 
                                                                                                                                                            equal level 

                     
 
 

 alpha↑⇒  
 
 
 
 
 
 
 
                                                                                                                                                            equal level 
  
 
 
 

 alpha↓⇒  
 
 
 
 
  

Fig. 10. Symmetrization of serialization components 

Conclusions 

1. In the existing multiprocessor hardware solutions and communication systems 
operating them, serialization is a feature consisting in collecting data directly 
before the realization of the process which uses them. It is often associated with 
the capability and procedure to create presence backup containing these data 
[5]. In our interpretation, the serialization would be an algorithm feature  
relating to the data accumulation in processes as well as to the cumulative pro-
cedure of data transfer to the selected place (processor and process) directly  
before their use. 

2. As the algorithm research shows, as a rule, the influence of both SLA and SLI 
components is essentially diverse (more than 40%). It results from the fact that 
a greater diffusion of subprocesses is the reason for the intensification of diffu-
sion procedures and data collection. Simultaneously, it is conducive to a de-
crease in the degree of data accumulation procedures used.  

3. Serialization characterizes the susceptibility of an algorithm to parallelization 
or diffusion of its realization. Processing environment parameters indicate 
whether it is more effective - to diffuse or to accumulate data (i.e. whether  
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the realization of concrete algorithm in a given processing environment is effec-
tive).  

4. Symmetrization of the serialization components (alpha level in Figure 9) allows 
one to deterministically specify the participation of the accumulation of SLA 
and the diffusion of SLI components in the given algorithm realization.  
If the diffusion influence is greater than the accumulation influence then  
alpha > 0.5, otherwise alpha < 0.5. 
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