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Abstract. The inverse problem consisting in an identification of boundary temperature is 
discussed. As the identification method the Pareto approach with two criteria connected 
with domain and boundary has been used. In order to solve the problem the energy minimi-
zation method connected with boundary element method for steady state problem has been 
employed. The theoretical considerations are supplemented by the examples of computa-
tions verifying the correctness of the algorithm proposed. 

1. Governing equations 

Let us consider 2D problem of temperature identification on boundary Γ1 [1, 2]: 
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where λ [W/(mK)] is thermal conductivity, T denotes temperature, Tb, qb are the 
given boundary temperature and heat flux, Td (ξi) are the known temperatures at 
the internal points ξi from the domain considered. 

2. Energy minimization method coupled with the BEM 

The boundary integral equation for problem (1) is of the form [4]: 

 * *( ) ( ) ( ) ( , )d ( ) ( , )dB T q x T x T x q x
Γ Γ

ξ ξ + ξ Γ = ξ Γ∫ ∫  (2) 
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where ξ ∈  Γ is the observation point, T*(ξ, x) is the fundamental solution, while 
q* = −λ∂T*(ξ, x)/∂n and B(ξ) ∈  (0,1). 

In numerical realization, the boundary Γ is divided into N constant boundary 
elements Γj [1,5]. Additionally, we assume that N1 nodes belong to the boundary 
Γ1, the nodes N1 + 1,…, N2 belong to Γ2, N2 + 1,…, N belong to Γ3 (Fig. 1). The 
integrals in equation (2) are substituted by sum of integrals and then, taking into 
account the boundary conditions (1), one obtains 
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Fig. 1. The domain considered 

where [4] 
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The well - ordered system of equations has the form 

 1
1 2
−= =Y A A P UP  (5) 

where 
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The temperatures at internal nodes ξi are calculated using the formula [1, 4] 
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From the system of equations (5) results that 
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Putting (11) and (12) into (10) one has 

 

1 2

2

2 2

1 2 1 2

1 1 1

1 1 1 1 1

( )
N N N

i w w w
ij ik kj ik kj j

j k k N

N NN N N
w w w w
ik kj ik kj j ij j ij j

j N k k N j N j N

T H G U H U T

G U H U P H P G P

= = = +

= + = = + = + = +

 
ξ = − + + 

 

 
+ − + + − 

 

∑ ∑ ∑

∑ ∑ ∑ ∑ ∑
 (13) 

or 
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In order to solve the problem considered, the energy minimization method is 
applied which resolves itself into seek of minimum of some functional with the 
following restrictions (c.f. equation (14)) [1-3] 
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3. Pareto approach 

Multiobjective optimization (MOO) problem can be expressed as searching for 
the vector x from a set of admissible solution which minimizes the vector of 
k objective functions [5] 

 [ ]T

1 2( ) ( ), ( ), ... ( )kJ J J=J x x x x  (19) 

Vector x must satisfy the p inequality constrains and r equality constrains 
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According to the Pareto optimality concept, a point x* is Pareto - optimal in the 
minimization problems if and only if there does not exist another point x such that 

 ( ) ( )≤ *J x J x  (21) 

and additionally at last one 

 ( ) ( )i iJ J< *x x  (22) 

The set of Pareto optimal solutions is called the Pareto front. In other words, it 
is a set of so-called non-dominated or efficient solutions. 

A standard technique for identification Pareto - optimal points is minimization 
of weighted sums of functions called metacriterion [5] 
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To obtain a set of Pareto front points, the minimization of set of functions (23) 
with different weights is demanded. 

In current analysis, the bi-objective problem is considered with functional 
connected with boundary of the domain analyzed [3] 
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 (25) 

and connected with the interior of the domain 
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Both functionals are connected with minimization energy method through ap-
propriate equations: (8), (9) for objective function J1, and (14), (18) for functional 
J2. 

4. Examples of computations 

The square of dimensions 0.1 × 0.1 m has been considered. The thermal con-
ductivity λ = 1 W/mK. 

The boundary has been divided into 40 constant boundary elements. In order 
to solve the inverse problem, it is assumed that the values of temperature are 
known at 12 selected points from interior of the domain - Figure 2. 

 

 
Fig. 2. Discretization and position of internal points 

Temperatures at internal points have been obtained from the direct problem (1) 
solution for the boundary conditions collected in Table 1. The parameter ε = 0.5, 
the distance between bottom side and sensors is equal 0.025 m. 
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Table 1 
Boundary conditions 

 1st variant 2nd variant 

Left side Tb = 50°C qb = 0 

Top side Tb = 100°C qb = 0 

Right side Tb = 100°C Tb = 100°C 

Bottom side Tb = 50°C Tb = 50°C 

 
Multiobjective optimization for several weights combination has been made. 

In Figure 3 the Pareto front obtained for 1st variant of boundary conditions is pre-
sented. 

Descriptions on the axes are defined as 
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1 1 1kJ J J= −  (27) 

and 
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2 2 2kJ J J= −  (28) 

where J1 and J2 correspond to the values of functional from single - objective op-
timization (or to weights combinations w1 = 1, w2 = 0 for J1 and w1 = 0, w2 = 1 for 
J2), while J1k and J2k are the Pareto optimal point co-ordinates obtained for k th 
weights combination. 

In Table 2 the results of computations for selected weights combinations for 
1st variant of boundary conditions are shown. 

 

 
Fig. 3. Pareto front (1st variant) 
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Table 2  
Solution of inverse problem (1st variant) 

Node 
w1 = 0.9 

w2 = 0.1 

w1 = 0.7 

w2 = 0.3 

w1 = 0.5 

w2 = 0.5 

w1 = 0.3 

w2 = 0.7 

w1 = 0.1 

w2 = 0.7 

1 50.4119 50.4119 50.4118 50.4116 50.4106 

2 51.1892 51.1890 51.1888 51.1883 51.1859 

3 51.5447 51.5446 51.5444 51.5439 51.5416 

4 51.2549 51.2548 51.2547 51.2545 51.2536 

5 50.0737 50.0738 50.0738 50.0739 50.0743 

6 47.8412 47.8413 47.8414 47.8415 47.8423 

7 45.0298 45.0298 45.0298 45.0299 45.0303 

8 44.5127 44.5127 44.5127 44.5127 44.5127 

9 53.8725 53.8725 53.8725 53.8725 53.8724 

10 80.6899 80.6899 80.6899 80.6899 80.6899 

K −984 312 −763 165 −542 019 −320 872 −99 725 

 
The results of computations for 2nd variant of boundary conditions are pre-

sented in Figure 4 and Table 3. Figure 4 illustrates the set of Pareto - optimal 
points obtained for such kind of boundary conditions, while in Table 3 the values 
of identified temperatures for different weights are shown. 

 
Table 3  

Solution of inverse problem (2nd variant) 

Node 
w1 = 0.9 

w2 = 0.1 

w1 = 0.7 

w2 = 0.3 

w1 = 0.5 

w2 = 0.5 

w1 = 0.3 

w2 = 0.7 

w1 = 0.1 

w2 = 0.7 

1 50.96078 50.96084 50.96095 50.96122 50.96253 

2 51.20679 51.20678 51.20676 51.20670 51.20640 

3 51.29075 51.29068 51.29055 51.29025 51.28876 

4 50.93627 50.93621 50.93612 50.93591 50.93483 

5 49.83781 49.83782 49.83782 49.83784 49.83791 

6 47.75828 47.75830 47.75835 47.75847 47.75904 

7 45.03993 45.03995 45.03998 45.04004 45.04034 

8 44.51270 44.51270 44.51270 44.51269 44.51265 

9 53.84629 53.84629 53.84628 53.84626 53.84618 

10 80.66937 80.66937 80.66937 80.66938 80.66939 

K −428 180 −327 366 −226 552 −125 738 −24 925 
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Fig. 4. Pareto front (2nd variant) 

5. Final remarks 

In both variants of boundary conditions the differences between temperatures 
identified for selected set of weights are very small, however the differences in 
optimal values of metacriterion are clear visible (c. f. Tables 2 and 3). It should be 
pointed out that most of Pareto - optimal points are located closer to the optimal 
values of functional J1 corresponding to Pareto optimal point co-ordinations for 
w1 = 1 and w2 = 0 (or to single - objective identification). Although for more pre-
cisely multiobjective identification the different functionals should be used, the 
algorithm proposed seems to be quite effective. 
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