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Abstract. The 1D problem of heat transfer in the tissueextbfl to action of external heat
source is considered. This phenomenon is deschipe@attaneo-Vernotte equation supple-
mented by adequate boundary and initial conditidossolve the problem formulated the dual
reciprocity boundary element method (DRBEM) is &gaplIn the final part of the paper the
examples of computations are shown.

1. Formulation of the problem

According to the newest opinions the heat condactimceeding in the bio-
logical tissue domain should be described by theehyolic equation (Cattaneo-
-Vernotte equation [1, 2]) in order to take int@agnt its nonhomogeneous inner
structure. So the following bio-heat transfer etprais considered

{TaZT(x t)ﬁT(xt)}AaZuxo acé(tx)

+Q(X D+ (1)

ot? ot 0 x>

wherec, A denote the volumetric specific heat and thermalaativity of tissue,
Q(x,t) is the capacity of internal heat sources due étabolism and blood perfu-
sion, t is the relaxation time (for biological tissue & & value from the scope
20-35 s),T is the tissue temperature,t denote the spatial co-ordinates and time.
The functionQ(x, t) is equal to

Qx H=G [T -Tx )|+ Q (@)

whereGg is the blood perfusion rateg is the volumetric specific heat of blooi,
is the artery temperature a@y, is the metabolic heat source.
The equation (1) is supplemented by the boundangitons

x=0: T(x t)="T,(9

x=L: T(x =T, ®
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and initial ones

t=0: T(x,)=T,, % =0 4)

t=0

where Ty (t), Ty, are known boundary temperatures digds known initial tem-
perature of biological tissue.

It should be pointed out that far= 0 the equation (1) reduces to the well-
known Pennes bioheat equation.

2. Boundary element method

Taking into account formula (2) the equation (1) ba written in the form

C{TOZT(X, 9, 0T(x t)}:

ot? ot
0°T(x, 1) AT(x 1) ©)
)\a—)(z’+Qm+GB CB[TB_ T( X D] -1 Gls CBT
or
0°T(x t) OT(x ) _9°T(x 9
A 0x° (€+1G &) ot e T (6)
GBCB[TB_T(X 1)] +Q,=0
Fort =t' one has
2 f
AT gk =0 W)
0 X
where
= oT(x 9 FT(x Y _
S(x t)=(c+1G ¢) ot |, o |, ®

GBCB[TB_T(X f):|_Qn

Application of the standard boundary element metleadis to the following
equation [3, 4]
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TE)+TE DAL t')-TE 000, t )=

L 9
o€ DT(L)-d € 0)TO, [ S(xt)TE, 3d: ©

where & is the observation pointT. (¢, x) is the fundamental solution,
qix, t")= -Aa T(x, t") /0 xis the heat fluxg” (£, X)= =20 T (&, X) /0 x is the
heat flux resulting from the fundamental solution.

For the problem considered the fundamental solutasfollowing form

T x>=%(L—|x—a|) (10)

Heat flux resulting from the fundamental soluti@nde calculated analytically

0T (€, %) _sgn(x-¢)

(&, X)= -\ 11
q (& % Ix 5 (11)
It should be pointed out that the functi®n(g, x) fulfills the equation
S
AT 5 0 12
0Xx

wheres (&, x) is the Dirac function.

3. Dual reciprocity boundary element method

The solution of Cattaneo-Vernotte equation (6) teritfor timet " (Equation
(7)) can be expressed as a sum [5, 6]

T(x t)=T(x t)+U(x {) (13)
where the first function is the solution of Laplaagation

*T(x t) _

A
0 Xx?

0 (14)

andU (x, t") is a particular solution of Equation (7), thisans

92U (x,1)

UKD _ a2U(x 1)
X - "

at at’ (15)
Gs CB[TB_U(X t)] +Q,=0

A - (c+1Gy G)
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From Equations (6), (13), (14), (15) results that
2
au(x, 1) N CTG U(x, t)
at at?

OT(x 1), Cra2 T(x 1)
ot ot?

{(CHGBCB) +Gg%U(>H} =

t=tf

(16)

|:(C+TGBCB) + G %1(2(1}

t=t
So, the source function (8) can be expressed msviol

ou(x, t)
ot

2
aa U(x, t)

S(x €)= (c+1G §) a0

t=t' ) (17)

GBCB[TB_U(X tf)]_ Q,

It is generally difficult to find the solutiob (x, t). In the dual reciprocity me-
thod, at first, the following approximation of fuian S(x, t") (c.f. Equation (8)) is
proposed [5]

S(x )= a(t) RO} 18

wherea, (t") are unknown coefficients arRel(x) are approximating functions ful-
filling the equations

0°U, (% t")

ROY=A—

(19)

In Equation (18)K corresponds to the total number of nodes, wheethe
number of boundary nodes ald- 2 is the number of internal nodes.
The last integral in equation (9) can be expresseillows

L

f g K U, |
=S )T (& =] 22 a2 1, ya: ()

o k=1

Integrating twice by parts with respectd¢one obtains

D——ZK:ak(tf)J{ 0T (&, X)}U (X) dx-

(21)
6U (x)

AU (X

iak(t‘)[ﬂ €, 929 o £ X’}

x=0
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Taking into account the property (12) one has
D=Ya ()[U,®+T € WO - U3 a6 35S (22)

where

w, (% = -2 2% (23)
0 X

Finally, the Equation (9) can be written in therfor
TE)+TE DL t)-T € 00 = g€, DT(LE)
~GEOTO. ) YA (U ) T & UW (-
T'(€ OW,(0)- d €&, DU, (L+ 4 €, U (0) (24)

We define [5]

uk(x):|xk:1’4 +|)&;’¢ (25)

from which results that
1 —_
W, (9 =A(x - »(—+Mj (26)
2 3
On the basis of (25) the functions (19) are catedla

(1, 2% X
Pk(x)—A(TTJ 27)

The following approximations of time derivativespegpring in formula (8) can be
applied

OT(x B  _T(xt)-T(x %) 28)
ot | At
°T(x |  _T(x t)-2T(x {™)+ T(x t7?) 29)
ot | (At)?

So, we have (c.f. Equation (18))
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T(x t)-T(x £%)

(c+1G; i) At
e T (% 1) =2T(x tf:)+ T(x t72), (30)
@
GoeT(x )= G 6 T- Q=) alt) R )
or
AT(x )+ BTOx £+ CTx E)+ D3 a(h) KX (31)
where

ACHTG G, T G B:~[C+TQ§%+2CTJ

At (At)? At (At)? (32)
-t = -
- (At)2 , D GB G TB Qn

Let x; = 0, % = L, and xare the internal nodes, i = 3, 4,..., K. For thesdes
the following equations are obtained

A-Ef + BTf—1+ C'irf_z + D:i d R » s izl, 2, ey K (33)

This system of equations can be written in the mébrm

AL +BTTHCT7+ D [R(x) B(X) .. R(N|&
AT/ +BTL 7+ CT7+ Dl | RB(x) R(x) R(x%)| 2
AT +BT "+ CT 2+ D[ =| P(x) P(x) R(%) | & (34)
AT +BT '+ CT 2+ D] [R(%) B(Xx) . R(x)] a
or
AT'+BT"'+CT'"?+D=Pa' (35)

from which results that

a' =P(AT' +BT'*+CT'2+D) (36)
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The Equation (24) for the nodrsi = 1, 2,... K can be expressed in the form

T(X, t')+G, 0, )+ G, L t)= H TO, t)+ H, T(L t)+

K (37)
kZak(t‘)[uk<m+alw<0)+ G, W( D+ H YO+ H, Y(D]
or
'|'if+G|qu+($2C%=|-i|l'|f+|-i|2'|;+
K (38)
28U+ GWOD+ G WOH— H W3- H WY
where
__L-x ' T
Gy=-"py Go=os Hi=H. =3 (39)
The system of Equations (38) can be written inntiagrix form
Gq'=HT"+(GW -HU)a' (40)
where
(G, G, 0 .. O
G, G, 0 .. 0
G=|G, G, 0 .. 0 (41)
G Go 0 .. 0
H,-1 H, O 0]
H, H,-1 0 0
H= H31 32 -1 0 (42)
L Hia H.+.<.2 0 _1_
and
UL (4)  Uy(x) Uy(x) o U (X)]
Ui(X) Ua(x) Uy(x) ... Uc(X)
U=l Ui(x) Ux(x) Ug(x) ... Uc(x) (43)

Ui (%) Up(%) Us(%) - U (%))
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WO) W(x) WY .. W( ]
Wi(%) W(x) WY .. W(Y

W=l 0 0 0 0 (44)
|0 0 0 0 |
while
T [d] [d]
T, a, a
T' =T |, q'= , a' =|af (45)
T | | 0] E

Putting (36) into (40) one has
Gq'=HT"+M(AT" +BT'*+CT" 2 +D) (46)
where
M=(GW -HU)P* (47)

The boundary conditions (3) should be introducedh system of equations
(46) and next this system can be solved. A stamtpaf numerical simulation
process results from the initial conditions (4)particularT? = T = T, for i= 3,
4,...K.

4. Results of computations

The layer of tissuel(= 1 cm) limited by the skin surface and conventilyres-
sumed internal one is considered. The followinguingata have been introduced
A = 0.5 W/(mK),c = 4.2 MJ/(nM K), ¢z = 3.9962 MJ/(MK), Gg = 0.002 1/s,
Ts = 37°C,Qn = 420 W/ni, t© = 35 s,T,= 37°C. The boundary condition on the
skin surface has been assumed in the fof) = 37 + 0.25 while for internal sur-
facex =L: Ty, = 37°C.

The problem has been solved by means of the DRBHd\é¢nthe assumption that
in the interior of domain 99 internal points haweb distinguished andt = 0.5.

In Figure 1 the temperature distribution in thesdis for times 10 and 20 s for
t = 35 s (Cattaneo-Vernotte model) and= 0 (Pennes model) is shown. Figure 2
illustrates the heating curves at two points sekétom the domain considered.
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Fig. 1. Comparison of Cattaneo-Vernotte and Penneelsie temperature distribution
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Fig. 2. Comparison of Cattaneo-Vernotte and Pennefelse heating curves for
x=0.0001 m ane = 0.001 m
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The numerical solution of Cattaneo-Vernotte equaiio comparison with the
Pennes one leads to the visible different resuftsoduction of relaxation time

causes that the process proceeds slower.
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