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Abstract. Thermal processes proceeding in domain of biodddissue subjected to a strong
external heat flux can cause the water evaporatfatt (the concentration of liquid in the
tissue is taken to be 79%). The phase changeusassto occur between 98 and 102°C. This
rather artificial range results from the mathenatmodel basing on a concept of fixed domain
approach which is used in this paper. The high éatpre of tissue can be an effect of
accidental burns or conscious activities connegiéid the hyperthermia treatments. From the
mathematical point of view the problem is describgdhe well known Pennes equation with
additional term controlling the evaporation procass a set of boundary-initial conditions. On
a stage of numerical simulation the finite diffevenmethod is used. The examples of
computations are also presented.

1. Governing equations

Thermal processes proceeding in domain of livisgué are described by the
following partial differential equation (Pennes atjan)

()T - i m)o7 (xe) ]+ Q1) v@u (T)+QT) @

wherec [J/(n?K], A [W/(mK)] are the volumetric specific heat and thei con-
ductivity of material,Qp, Qne, Qv are the perfusion heat source, metabolic heat
source and internal heat source controlling theperation processl, x, t denote
the temperature, spatial co-ordinates and time.

According to the concept called “a fixed domain rgeh” [2, 3] the last term
of equation (1) can be connected with the first and then one obtains

o(m) 2T = o (1)o7 (1)) + Q4 (1) + Que(7) @



150 B. Mochnacki, M. Dziewfski

whereC (T) is called “a substitute thermal capacity” [2-Fhis parameter must
fulfil the following condition

[c(n)du=[c(n)du+z,L ®

whereT,, T, is the range of temperatures in which the evapamaprocess pro-
ceeds (here we assurie=98°C, T,=102°C),L is the latent heat of evaporation,
Z,=0,79 [1] is the volumetric fraction of liquid insBue domain.

The substitute thermal capacity is approximatedablgroken line shown in
Figure 1. Figure 2 illustrates the course of tisheemal conductivity [1].
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Fig. 1. Substitute thermal capacity
For the assumed input data one has
3.8, T<98
c(T)= 3.8+ 2.339516T - 9B , 9T < 1( @
0.44- 4.01951fT - 102 , 108T < 1(
0.44, T>100
and
0.52, T<98
C(T)=40.52-0.107T - 98, 98T < 1C (5)

0.092, T> 10z
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Fig. 2. Thermal conductivity

The perfusion heat source is equal to
Q(T) = oW (T)[To =T (x.t)] (6)

wherecs = 3900J/(kgK) is the specific heat of blood (T) [kg/(m’s)] is the vo-
lumetric perfusion coefficientiz= 37°C is the blood temperature.

In numerous works (e.g. [4-6]) connected with nuoamodelling of bio-heat
transfer one assumed that the valud\gfand also the metabolic heat sou@g;
are independent of temperature (and others therysagat parameters). In a case
of non-homogeneous domains (e.g. muscle and fatp#nameters discussed are
taken to be different for successive sub-domaing],7but constant. In this paper
on the basis of information presented in [9], tmperature-dependent values of
Ws and Q. are taken into account. In particular, for theuindata assumed we
have (Fig. 3)

1.159, T< 428
W, =4{1.159 & 9.T - 42p] , 428T < 4E (@)
28.975, T=> 45
and (Fig. 4)
Qu (T)=1091 1+ 0.{T - 3] (8)

For instance, ifT=45°C then the capacity of metabolic heat source aqgual
Qe = 1963.8W/m°,
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Fig. 3. Perfusion coefficient
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Fig. 4. Metabolic heat source

The bio-heat transfer equation must be supplemdntatie boundary and ini-
tial conditions. On the skin surface subjectedrt@sternal heat source the knowl-
edge of heat fluxy and its exposure timi is accepted. In a case of 1D task this
condition takes a form

0T (x.t)

= : ==\
x=0, t<t,: q(x;t) x

, t=t,: g(xt)=0 9)

For x=G (conventionally assumed internal boundary of doinéie non-flux
condition can be accepted, while fer0: T(x, 0) =37°C.
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2. Example of computations

The 1D problem is considered. The tissue l&er2 cm is subjected to the ex-
ternal heat flux equals &V/m?, whilet,=100s. The explicit scheme of FDM for
non-linear parabolic equations has been appliedT2¢ number of internal nodes
n =100, time step\t =0.005s. In Figure 5 the temperature profiles for timed®
15, 20 and 368 are shown (curves 1, 2, 3, 4, 5, respectively® fiext Figure illus-
trates the heating curves at the points0.1,0.5,0.9,1.3 and 1.Tmm (1, 2, 3, 4, 5,
respectively).
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Fig. 5. Temperature profiles
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Fig. 6. Cooling curves
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In comparison with the solutions for which the emation effect has not been

taken into account the temperatures reach the tabehower values. It results

from the big value of substitute thermal capacintecolling the evaporation proc-
ess. So, in the case of numerical modelling oligsiseating, especially when the
intensity of external heat flux is big, the evapima effect should be taken into
account.
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