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Abstract. Thermal processes proceeding in domain of biological tissue subjected to a strong 
external heat flux can cause the water evaporation effect (the concentration of liquid in the 
tissue is taken to be 79%). The phase change is assumed to occur between 98 and 102°C. This 
rather artificial range results from the mathematical model basing on a concept of fixed domain 
approach which is used in this paper. The high temperature of tissue can be an effect of 
accidental burns or conscious activities connected with the hyperthermia treatments. From the 
mathematical point of view the problem is described by the well known Pennes equation with 
additional term controlling the evaporation process and a set of boundary-initial conditions. On 
a stage of numerical simulation the finite difference method is used. The examples of 
computations are also presented. 

1. Governing equations 

Thermal processes proceeding in domain of living tissue are described by the 
following partial differential equation (Pennes equation) 
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where c [J/(m3 K], λ [W/(mK)] are the volumetric specific heat and thermal con-
ductivity of material, Qb, Qmet, Qv are the perfusion heat source, metabolic heat 
source and internal heat source controlling the evaporation process, T, x, t denote 
the temperature, spatial co-ordinates and time. 

According to the concept called “a fixed domain approach” [2, 3] the last term 
of equation (1) can be connected with the first one and then one obtains 
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where C (T ) is called “a substitute thermal capacity” [2-4]. This parameter must 
fulfil the following condition 
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where T1, T2 is the range of temperatures in which the evaporation process pro-
ceeds (here we assume T1 = 98°C, T2 = 102°C), L is the latent heat of evaporation, 
zw = 0,79 [1] is the volumetric fraction of liquid in tissue domain. 

The substitute thermal capacity is approximated by a broken line shown in  
Figure 1. Figure 2 illustrates the course of tissue thermal conductivity [1]. 

 

 
Fig. 1. Substitute thermal capacity 

For the assumed input data one has 
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Fig. 2. Thermal conductivity 

The perfusion heat source is equal to 

 ( ) ( ) ( ),b B B BQ T c W T T T x t=  −    (6) 

where cB = 3900 J/(kgK) is the specific heat of blood, WB (T ) [kg/(m3s)] is the vo-
lumetric perfusion coefficient, TB = 37°C is the blood temperature. 

In numerous works (e.g. [4-6]) connected with numerical modelling of bio-heat 
transfer one assumed that the value of WB and also the metabolic heat source Qmet 
are independent of temperature (and others thermophysical parameters). In a case 
of non-homogeneous domains (e.g. muscle and fat) the parameters discussed are 
taken to be different for successive sub-domains [7, 8], but constant. In this paper 
on the basis of information presented in [9], the temperature-dependent values of 
WB and Qmet are taken into account. In particular, for the input data assumed we 
have (Fig. 3) 
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and (Fig. 4) 

 ( ) ( )1091 1 0.1 37metQ T T=  + −    (8) 

For instance, if T = 45 °C then the capacity of metabolic heat source equals  
Qmet = 1963.8 W/m3. 
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Fig. 3. Perfusion coefficient 

 
Fig. 4. Metabolic heat source 

The bio-heat transfer equation must be supplemented by the boundary and ini-
tial conditions. On the skin surface subjected to an external heat source the knowl-
edge of heat flux q and its exposure time te is accepted. In a case of 1D task this 
condition takes a form 
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For x = G (conventionally assumed internal boundary of domain) the non-flux 
condition can be accepted, while for t = 0: T(x,  0)  = 37°C. 
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2. Example of computations 

The 1D problem is considered. The tissue layer G = 2 cm is subjected to the ex-
ternal heat flux equals 16 kW/m 2, while te = 100 s. The explicit scheme of FDM for 
non-linear parabolic equations has been applied [2]. The number of internal nodes 
n = 100, time step �t = 0.005 s. In Figure 5 the temperature profiles for times 5, 10, 
15, 20 and 30 s are shown (curves 1, 2, 3, 4, 5, respectively). The next Figure illus-
trates the heating curves at the points xi =

 0.1, 0.5, 0.9, 1.3 and 1.7 mm (1, 2, 3, 4, 5, 
respectively). 

 

 
Fig. 5. Temperature profiles 

                  

Fig. 6. Cooling curves 
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In comparison with the solutions for which the evaporation effect has not been 
taken into account the temperatures reach the essentially lower values. It results 
from the big value of substitute thermal capacity controlling the evaporation proc-
ess. So, in the case of numerical modelling of tissue heating, especially when the 
intensity of external heat flux is big, the evaporation effect should be taken into 
account. 
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