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Abstract. The active role played by chemotactic current density of the migrating cells in order to 
overcome its diffusion current, leads to a spatially - non-homogeneous and time - persistent distribu-
tion of the cells. We show that independently of the initial attractant concentration, its quantity tends 
exponentially to the concentration of cells as the system approaches a steady state. 

Introduction 

There is evidence that the sensing of chemical concentration gradients is essen-
tial to many single cell living organisms, insects and even cells in growing multi-
cellular animals. Conveyance of information between members of a species is  
often based on their ability to release and sense the presence of special chemicals 
called pheromones. The presence of pheromones can lead to a direct movement of 
cells in the direction of, or against a concentration gradient of the pheromone. This 
may result in a process in which the cells move from regions where their concen-
tration is lower to regions where it is higher. Such a process, which is contrary to 
common diffusion due to thermal motion, is referred as a chemotaxis. Chemotaxis 
is also crucial in biological processes of higher animals. For example, a bacterial 
infection generates chemicals in its vicinity, to which leukocyte cells in the blood 
are attracted in the direction of the concentration gradient of the chemical. 

Chemotactic processes are successfully modeled mathematically using coupled 
nonlinear differential equations [1]. Recent models, intended to be biologically 
realistic, have numerous parameters and are so complicated that it is difficult to 
assume their value. Most of results obtained from such models are numerical [2-4]. 
In this work we analyze the simple chemotactic model of Keller and Segel [5], 
which contains a few essential and measurable parameters and gives insight into 
the phenomena which govern cell aggregation. In the Keller-Segel model there is 
no cell generation, i.e. the number of cells is considered to be constant. The con-
centrations of cells and of the attractant are characterized by their densities, and 
both the cells and the attractant can flow along a single line. The rate of change of 
the attractant and of the cell concentrations are nonlinear functions of the concen-
trations of the cells and of the attractant. The process that occur will be described 
by equations which depend on the coordinate r

�
 and the time t. 
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The aim of what follows is to show that among the solutions of the equations 
mentioned always exists the steady state solution. 

Basic equations 

We consider the density of the cells ( )tr ,
�α  and of the attractant ( )tr ,

�ν  as func-

tions of an arbitrary point in space and time, characterized by the position vector  
r
�

 and time t. The attractant is a chemical, which is produced by the cell at a given 
rate. 

The cell and attractant flows are described by current density vectors, ( )trJ ,
��

 
and ( )trJ ,

��

α , respectively, which give the direction of the flow and the quantity 
that passes per unit time through a unit area perpendicular to the flow direction. 
The cell current density ( )trJ ,

��
 is composed of two parts: the diffusion current 

density ( )trJ ,
��

ν , due to the concentration gradient ν∇ , and the chemotactic cur-
rent density, ( )trJc ,

��
, due to the gradient α∇  of the attractant. Hence 

 ( ) ( ) ( )trJtrJtrJ c ,,,
������

+= ν  (1) 

The attractant current density ( )trJ ,
��

α  is purely due to diffusion. The diffusion 

current densities are assumed to have the form 

 ( ) ( )trDtrJ ,,
���

ννν ∇−=  (2) 

and 

 ( ) ( )trDtrJ ,,
���

ααα ∇−=  (3) 

with DV the cell diffusion coefficient and Dα the attractant diffusion coefficient, 
which are taken as positive and independent of the space and time coordinates. 
These are the usual diffusion equations, which express the fact that in a very good 
approximation a density gradient produces a flow which is linearly proportional to 
that gradient. 

The chemotactic current density is assumed to be given by 

 ( ) ( ) ( )[ ] ( )trtrtrtrJc ,,,,
�����

ααχν ∇⋅⋅=  (4) 

where ( )[ ]tr ,
�αχ  is the chemotactic coefficient, which is also taken positive. Since 

the cells are producing the attractant, the attractant current is proportional to the 
cell density ( )tr ,

�ν . 

Notice the difference in sign between the diffusion currents and the chemotac-
tic current: whereas diffusion always carriers material from regions of higher to 
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those of lower concentrations, the chemotactic current does the opposite. The 
chemotactic flux is generated by the self - propelling motion of the energy con-
suming biological activity of living organisms, as contrasted with the passive dif-
fusion currents of the cells and the chemicals. For the chemical - in this case at-
tractant - diffusion is a process which is always observed and is due to the random, 
thermally excited, motion of the molecules, coupled with their mutual repulsion at 
small distances. 

The rate of change of ( )tr ,
�ν  is due to a generation of new cells, plus an out-

flux of ( )trJ ,
��

, hence the cell density and cell current density are related by so-

called continuity equation 

 
( ) ( ) ( )[ ] ( )trJtrtrg
t

tr
,,,,

, ����
�

⋅∇−=
∂

∂ ναν
ν  (5) 

where gV is a cell generation rate function, which depends in general on both the 
cell and the attractant concentrations. From now on, we omit the arguments r

�
and 

t, to simplify the notation. Using Equations (1) and (2) the continuity equation for 
( )tr ,
�ν  becomes 

 ( ) ( )[ ]ααχννναν
νν ∇⋅⋅−∇⋅∇−=

∂
∂

Dg
t

,  (6) 

The continuity equation for the attractant is given, using (3), by 

 ( ) ( )αναα
αα ∇⋅∇+=

∂
∂

Dg
t

,  (7) 

where gα is a cell generation rate (also called “source”) function for the chemical 
attractant. 

The normal passive diffusion processes in Equations (6) and (7) have homoge-
nizing effect on the densities, whereas the chemotactic process, given in (6) by the 
term with the negative sign, tends to make the cell density spatially inhomogene-
ous. It is mainly this inhomogeneous steady state that are important for biological 
processes. 

In the following we derive a general time - dependent property of the system 
which will be summarized by Equations (12) and (13). The boundary condition, 
that the boundary surface S  enclosing the volume V is impenetrable to the attrac-
tant, is expressed by 

 ( ) 0ˆ =⋅ SJn α
�

 (8) 

Using Equation (3) this yields the Neumann boundary condition 
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 ( ) 0ˆ =∇⋅ Sn α  (9) 

where n̂  is a unit vector perpendicular to S  and pointing towards the exterior at 
the point under consideration. 

We assume that S  is impenetrable not only to the attractant, but also to the 
cells: hence 

 ( ) ( )( ) 0ˆˆ =∇+∇−⋅=⋅ SDnSJn αανχνν
�

 (10) 

Using Equation (9) we arrive at the Neumann boundary condition for the cells: 

 ( ) 0ˆ =∇⋅ Sn ν  (11) 

Integrating (6) and (7) over the volume V, using the divergence theorem and apply-
ing the boundary conditions (9) and (11), leads to 

 ( )∫=
∂

∂

V

dVg
t

M ναν , ,    ( )∫=
∂
∂

V

dVg
t

A ναα ,  (12) 

where M and A are the total masses of cells and attractant in V defined by 

 ( )∫=
V

rdVM
�ν ,    ( )∫=

V

rdVA
�α  (13) 

The steady state of the system is defined by 0/ =∂∂ tν  and 0/ =∂∂ tα . In this 
state M and A are constant in time and we show that in the Keller-Segel model they 
are proportional to each other. 

The Keller-Segel model. This model for chemotaxis consists of neglecting the 
cell production source, i.e. setting 

 ( ) 0, =νανg  (14) 

and modeling the attractant source term in (7) by 

 ( ) αννα ανα ⋅−⋅= hhg ,  (15) 

with νh  and αh  positive constant. In this simple model there is a linear competi-

tion between attractant production νν ⋅h  by the cell and spontaneous attractant 

decay αα ⋅− h . The diffusion coefficients νD  and αD  are assumed to be con-

stant, as is the chemotactic coefficient of the attractant, ( ) 0χαχ = , with 0χ  con-

stant. In this approximation the continuity equations (6), (7) can be written in 
terms of scaled variables and coordinates in the unit less form 
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 ( )α
τ

∇−∇⋅∇=
∂
∂⋅ nn
n

D

1
 (16) 

and 

 naa
n +−∇=

∂
∂ 2

τ
 (17) 

The new unit less quantities are defined by 

 ( ) ( )tr
hD

h
n ,, 0 ��

νχτξ
αν

ν ⋅= ,    ( ) ( )tr
D

a ,, 0 ��
αχτξ

ν
⋅=  

 
α
ν

D

D
D = ,    th ⋅= ατ ,    r

D

h ��
⋅=

α

αξ  (18) 

The operator ∇  now represents differentiation with respect to the vector ξ
�
. 

The scaled Equations (16) and (17) depend on the single physical constant D, the 
ratio of the diffusion coefficients. The scaled steady state equations obtained from 
(16) and (17) setting 0/ =∂∂ τn  and 0/ =∂∂ τa , contain no physical constants; 
thus they are universal in the sense that their solutions are valid for any combina-
tion of biological parameters. 

Since in this model the cell generation source term is zero, the total mass M of 
cells is conserved. We define the scaled total mass of cells and attractant by 

 ( ) ( )[ ]∫=
V

n rdVnG τξτ ,
��

,    ( ) ( )[ ]∫=
V

rdVaG τξτα ,
��

 (19) 

Integrating Equation (17) over the volume, using divergence theorem and the 
Neumann conditions leads to the equation 

 nGG
G =+
∂

∂
α

α

τ
 (20) 

Since the total cell mass M, and hence nG , is constant in time, ( )ταG  is given 

by 

 ( ) ( )[ ] ( ) nn GGGG +−⋅−= ττ αα exp0  (21) 

From Equation (21) it follows that, independently of the initial attractant con-
centration, αG  tends exponentially to nG  as the system approaches a steady state. 

Using (13) and (18) we obtain for steady state the relation 
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 M
h

h
A ⋅=

α

ν  (22) 

where A and M are the total masses of attractant and cells, respectively. 

Conclusions 

When the cells and the attractant are restricted to a limited volume, a spatially 
inhomogeneous aggregation of the cells and of the attractant may result. We show 
that in the steady state the total mass of the attractant is always proportional to the 
total mass of the cells, hence constant. 
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