
Scientific Research of the Institute of Mathematics and Computer Science 

ON SOME BLACKJACK TYPE OPTIMAL STOPPING PROBLEM 

Andrzej Grzybowski 

Institute of Mathematics, Czestochowa University of Technology, Poland, azgrzybowski@gmail.com 

Abstract. In the paper a class of optimal stopping problems which have some blackjack 
game features is considered. Both a value of the problem and an optimal stopping rule are 
found in some special case.  Some examples and practical questions are considered as well. 

Introduction 

Blackjack (also known as “twenty-one") is the most popular casino table card 
game in the world. Blackjack is played on a points system that gives numeric val-
ues to every card in a single deck of playing cards. The cards are given to a player 
sequentially until he decides to stop (stand). His score is the sum of the values in 
hand. 21 is the best score one can achieve in the game, and players should be fo-
cusing on getting as close to that number as possible without busting. However, if 
a player’s cards exceed 21, then he has gone bust - the player loses and its bet is 
immediately taken by the dealer once this happens. The feature of the game we are 
interested in is the following: the player with the highest total wins as long as it 
doesn't exceed a given limit number. 

In the paper we consider similar problem. Let X1, X2,…, XN  be a finite sequence 
of independent nonnegative random variables. A player observes sequentially the 
values and decides whether to stop or to continue. If he decides to stop at the mo-

ment k he gains a value )(
1
∑
=

k

i
iXW , where ++ → RRW :  is a given nonnegative 

function. We assume that the function W is positive and  increasing on the interval 
(0, T] and is equal to zero for arguments greater than T. It means that the player 

obtains positive payoff which is the greater, the greater  the sum ∑
=

k

i
iX

1
 is, unless 

the sum exceeds a positive number T - a limit given in the problem (in blackjack 
game T = 21). If so, then the player gains 0. Our aim is to find a stopping rule 
which maximizes the expected payoff for a player. 

Such a problem can be a model for various real world situations which can be 
observed in economics, finance, politics and social life. One specific problem of 
the type will be considered in detail in the sequel. 
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The problem outlined above belongs to so called optimal stopping problems 
which, historically, arose in the sequential analysis of statistical observations in 
early forties, see Wald [1]. In the next decade such problems were generalized to 
problems of pure stopping. In the 1960’ papers of Chow and Robbins, see [2, 3], 
gave impetus to a rapid growth of the subject. The development of the theory and 
its applications were then summarized in a book [4]. A huge stimulus to the devel-
opment of optimal stopping theory was also provided by the option pricing theory, 
developed in the 1970’ in the theory of economics and finance, see [5]. Now the 
theory of optimal stopping is a scientific area of still growing interest to many 
applied theories in economics, finance etc. Recent developments in the theory and 
its applications are presented in [5-7]. 

1. Preliminaries - some general definitions and results 

Before we solve our blackjack type optimal stopping problem we need to pre-
sent some necessary formal definitions and fundamental results from the theory of 
optimal stopping. They may be found e.g. in [3, 4, 8]. 

Let X1, X2,… be a sequence of independent random variables. Let ����n  denote the 
σ - algebra generated by the random variables X1, X2,…, Xn in an underlying prob-
ability space (Ω,����,P)  A stopping rule is a random variable τ with values in a set of 
natural numbers such that {τ = n} ∈  ����n for n = 1,2,… and P(τ < ∞) = 1. Let M(n,N) 
be a class of all stopping rules τ such that P(n ≤ τ ≤ N) = 1. The class M (1,N)  will 
be denoted M(N). 

Let (Yn, ����n), n=1,2,…, be a homogenous Markov chain with values in a state 
space (Y,����). Let RRW →: be a Borel measurable function which values W(y) will 
be interpreted as the gain for a player when he stops the chain (Yn, ����n) at the state 
y. Assume that for a given state y and for a given stopping rule τ the expectation 
E(W(Yτ)|Y1 = y) exists. Then it is natural to interpret the value - denoted by EyW(Yτ) 
- as the mean gain corresponding to a chosen stopping rule τ. Let 

VN(y) = 
)(W

sup
NM∈τ

 EyW(Yτ) 

where MW(N)  is a set of all stopping rules belonging to M(N)  for which the expec-
tations EyW(Yτ) exist for all y ∈  Y and are larger than -∞. The function VN is called 
a value of the problem of optimal stopping. 

A stopping rule τ* ∈  MW(N) satisfying the condition 

EyW(Yτ∗ ) = VN(y) for all y ∈  Y 

is called an optimal stopping rule. 
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It is clear that the value VN(y) is the maximum possible mean gain to be ob-
tained when the observation time is bounded by the number N. The following theo-
rem, which can be found in [8], provides us with the solution of the optimal stop-
ping problem in such a case. In order to state the theorem we need some additional 
definitions. Let ���� denote a class of all Borel measurable functions W for which the 
expectations EyW(Y1) exist for all y ∈  Y�  Let us define an operator Q operating on 
functions W ∈  ���� by 

 QW(y) = max{W(y), EyW(Y1)} 

Theorem 1 (Shiryayev [8]). Assume that the gain function W ∈  ����� Then:  
i. Vn(y) = Qn(y),  n=1,2,… 
ii.  Vn(y) = max{W(y), EyVn-1(Y1)}, where V0(y) = W(y) 

iii.  A stopping rule *
nτ  defined by 

)}()(:0min{*
mmknn yWyVnk =≤≤= −τ  

is an optimal stopping rule in a class MW(n) 

iv. If Ey|W(Yk)| < ∞ , for k = 1,…,n,  then the stopping rule *nτ  is optimal in 

the class M(n) 

2. Problem statement and its solution 

The problem we are to consider in detail can be formulated as follows. Let X1, 
X2,…, XN be a sequence of independent random variables having the same expo-
nential distribution with the density function 

 f (t ;λ) = λ e - λ t1[0,∞)(t) ,  λ > 0 (1) 

Problem: The player observes the random sequence and decides whether to stop 

or to continue. If he decides to stop at the moment n he will gain )(
1
∑
=

+⋅
n

i
iXyB , 

B > 0, if the sum is not greater than T and will gain 0 otherwise. Find the optimal 
stopping rule and a value of the problem. 

A given nonnegative real number y appearing in the above gain definition is an 
another characteristic of the problem and may be interpreted as an initial state of 
the process of observations. 

It is easy to see that the problem is a special case of the general problem con-
sidered previously. Indeed, if we define a Markov chain (Yn, ����n) with 

 ,
1
∑

=

+=
n

i
in XyY  n = 1,…, N  (2) 
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and ����n being generated by the observations X1,…, Xn, and if the gain function W is 
given by the formula: 

 W(y;T) = B y 1(0,T](y) (3) 

with T and B  being given real positive numbers, then we obtain the problem con-
sidered in the previous section. So, in order to solve the problem we apply Theo-
rem 1. To do this first we need to find the form of Vn(y) = Qn(y), n=1,2,…,N. 
By definition of the operator Q we have for every y ∈  (0,T]: 

 =+== )}(),(max{)}(),(max{)( 11 XyWEyWYWEyWyQW yy  

 }),(),(),(max{
0

dxxfTxyWyW λ∫
∞

+ )},,(),(max{ 1 λTyIyW
df

=  

For y < T the function I1 appearing above can be expressed as follows: 

=⋅++=+= −
∞

−

−
−∞

∫∫∫ dxedxexyBdxxfTxyWTyI x

yT

x
yT

λλ λλλλ 0)(),(),(),,(
00

1   

 )1( )()( λλ
λ

λλ yeTe
B TyTy +−− −−  (4) 

An exemplary typical graph of functions W and I1 are presented on Figure 1. 
 

0 t1 T  
Fig. 1. Graphs of functions I1 (continuous line) and W (dashed line) 

It is easy to verify, that (for any given parameters B, T, λ characterizing our 
problem) a point t1 for which the two functions  have equal values is exactly the 
same as the point at which the function I1 takes its only maximum on the interval 
(0,T]. Moreover the following conditions hold for every T > 0 and λ > 0: 

),,(1 λTyI > W(y)  for y ∈  (0, t1) and ),,(1 λTyI < W(y)  for y ∈  (t1,T) 
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The value of t1 depends only on parameters T, λ and is given by the formula: 

 )1ln(
1

),(1 λ
λ

λ TTTt +−=  (5) 

The function V1 = QW is the maximum of the two ones presented on Figure 1 
and it follows from Theorem 1 that one step before the end of observations the 
player should continue the observations if he is at any state y which is less than t1 

and should stop otherwise. Obviously, the functions I1, W and V1 are equal to 0 for 
arguments greater than T. 

Let ),,( λTyI n denote the expectation ),( 11 XyVE ny +−  n = 1,…,N.  Now, with 

the help of mathematical induction, we show that the following lemma is true. 
 

Lemma. Let t1 be given by the formula (5). Then for any natural number n and 
for every T > 0, λ > 0 the function In satisfies the following conditions: 

i. ),,( λTyI n  > W(y)  for  y ∈  (0, t1)  

ii.  ),,( λTyI n  < W(y)  for  y ∈  (t1,T] 

iii.  0),,( =λTyI n  for y  > T 

Proof. It was already shown that conditions i.÷iii . hold for n=1. Now let us as-
sume that conditions (i-iii ) hold for In–1. Then, by the definition of Vn–1 and the 
induction assumption, we have for y ∈  (0, t1): 
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It implies that condition i. is satisfied. 
On the other hand, when y ∈  (t1,T] we again obtain: 

 )(),,(),()(),(),(),,( 1
00

1 yWTyIdxxfxyWdxxfTxyVTyI
yT

nn <=+=+= ∫∫
−∞

− λλλλ  

and thus the condition ii.  is satisfied. The condition iii.  is obvious so the proof of 
the lemma is completed. 
⁪ 

It follows from the lemma immediately that for n=1,…,N  functions Vn have the 
form:  

 )()()(),,()( ],(],0( 11
yyWyTyIyV Tttnn 11 ⋅+⋅= λ   (6) 

where t1 is given by (5). 
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The following proposition provides us with the solution of our problem. 
 

Proposition 
Let us consider a sequence X1, X2,…, XN  of  independent random variables with 

the same density functions given by (1). The optimal stopping rule for the problem 
of optimal stopping of the Markov chain (2) with the gain function (3) and initial 
state y is given by: 

 }:0min{ 1
1

* tXyYNk
k

i
kkN ≥+=≤≤= ∑

=
τ  

with t1 being given by the formula (5). 
The value V(y) = VN(y) of the problem can be calculated for y < t1 with the help 

of the following recursive equation 

 dxexyBdxeTxyVTyV x
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yt
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with the initial condition: )1(),,( )()(
1 λλ

λ
λ λλ yeTe

B
TyV TyTy +−−= −−  

We omit the proof of the Proposition because the results follow directly from 
Theorem 1, the Lemma and the formula (6). 

The results stated in the Proposition imply that at any moment k the player 
should continue the observations if he is at any state y which is less than t1 and 
should stop otherwise. Such a stopping rule maximizes his expected gain. The 
maximum what the player may expect to gain is V(y). 

3. Some examples and practical remarks 

We can see that the recursive equation (7) involves integrating and one cannot 
be happy about it. We may notice however, that for any natural number n the func-
tions Vn can be expressed in terms of elementary functions (involving ex, lnx, xn) 
though the calculations are rather arduous, even for small numbers n. Fortunately, 
one may use computer with symbolic manipulation software such as Mathematica, 
Maple, Maxima, Axiom, etc., to obtain the form of the functions. For example we 
applied Mathematica 4.0 software to compute the form of the functions  V5, V10 

and obtained the presented below Mathematica output (variables denoted y, T, 
λ, Β  have their previous meaning, symbol Log stands for natural logarithm de-
noted by ln in our paper). 
 

The Mathematica output for V5: 
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The Mathematica output for V10:  

 
 

Figure 2 shows the graphs of the functions V1 – given by (4) –, V5, V10 in a case 
where T = 10 and B = λ = 1. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Graphs of the values V1, V5, V10  as functions of an initial state of the process in the 
case where T = 10 and  B = λ = 1 (plots A,B,C respectively) 
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We can easily compute the value t1(10,1) = 10 - ln(11) ≈7.602. One can also verify 
that in such a case 

V1(0,10,1) = 9995.0
11

1 10 ≈−
e

, 

V5(0,10,1) =  796.4)11ln11ln4811ln87611ln721622680(
24

11
5 432

10 ≈+−+−−
e

,  

V10(0,10,1) = +−+−+ 11ln183978432011ln633978432010(
362880

11
10 210

10e
 

+−+− 11ln15153611ln285768011ln3663072011ln319892160 6543  

279.711ln11ln10811ln5256 987 ≈+−  
 

Consequently, in the case  where the limit value T equals 10 and  the player have 
nothing starting the game - the initial state y equals 0 - he should continue his 
game until his total score (the sum of already observed values) exceeds 10-ln(11) ≈ 
≈7.602. Applying this stopping rule he can expect to win (in average) about 0.9995 
if he has got only one step to the end of observations, about 4.796 if he has 5 ob-
servations ahead, and about 7.279 if he has 10 observations before the end of the 
game. No other stopping rule can guarantee the player as much. 
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