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Abstract. The hyperbolic equation (1D problem) supplemented by adequate boundary and 
initial conditions is considered. This equation is solved using the combined variant of the 
boundary element method. The problem is also solved in analytical way. The comparison of 
the results obtained by means of these two methods confirms the effectiveness and accuracy of 
the BEM. 

1. Formulation of the problem 

The following equation is considered 

 2

2

2

2 ),(),(),(

x

txU

t

txU

t

txU

∂
∂=

∂
∂+

∂
∂

 (1) 

where U (x, t) is an unknown function, x is the spatial co-ordinate and t is the time. 
The equation (1) is supplemented by the boundary conditions 
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and the initial ones 
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This type of boundary and initial conditions allows to solve the problem ana-
lytically and in this way the results obtained by means of the boundary element 
method using discretization in time can be compared with the analytical solution. 
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2. Boundary element method 

To solve the equation (1), the BEM using discretization in time is applied  
[1, 2]. So, the time grid 
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with constant step  1−−= ff ttt∆  is introduced.  

For the time interval  [ ]ff tt ,2−  the following approximations of time derivative 

can be taken into account 
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The second time derivative is approximated in following way 
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Let t∆β 1=  and ).,( tfxUU f ∆=  At the f-th time step )2( ≥= ftft ∆  the equa-

tion (1) can be approximately rewritten as 
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where for the first variant (equation (5)) 
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for the second variant (equation (6)) 
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and for the third variant (equation (7)) 
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For equation (9) the weighted residual criterion is applied [1] 
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where ξ∈ (0, 1) is the observation point, U * (ξ, x) is the fundamental solution and this 
function should fulfil the equation 
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where δ (ξ, x) is the Dirac function. It can be check that the following function  
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fulfills the equation (14). 
Additionally, the function q* (ξ, x) resulting from fundamental solution is defined 

 
x

xU
xq

∂
∂−= ),(

),(
*

* ξξ  (16) 

and it can be calculated analytically 
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where sgn(⋅) is the sign function. 
Integrating twice by parts the first component of equation (13) and taking into 

account the property (14) of fundamental solution one obtains 
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or 
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where  xtxUtxq ff ∂−∂= /),(),(  and 
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For ξ → 0 + one obtains 
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and for ξ → 1- one has 
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The system of equations (21), (22) can be written in the matrix form 
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or 
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where )2/(12211 AGG −=−= ,  )exp()2/(12112 AAGG −−=−= , 

 2/12211 −== HH ,  )exp(2/12112 AHH −==  

This system of equations allows to find the boundary values U (0, t f ), U (1, t f ). 
Next, the values of U at the internal nodes ξ∈ (0, 1) are calculated using the for-
mula (c.f. equation (19)) 
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this means (c.f. formulas (15) and (17)) 
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3. Analytical solution 

To solve the problem (1), (2), (3) analytically, the Fourier method [3, 4] is ap-
plied. So, one assumes that 
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and then 
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Putting (29) into (1) one obtains 
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this means 
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It is assumed that 
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where  0≠nλ  are the constants. 

If the functions Xn (x), Tn (t) will be the solutions of equations 
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then these functions will fulfill the equation (31). The equations (33) can be writ-
ten in the form 

 0)()()( 2''' =++ tTtTtT nnnn λ  (34) 

and 

 0)()( 2'' =+ xXxX nnn λ  (35) 

The solution of equation (35) is following 

 xBxAxX nnnnn λλ sincos)( +=  (36) 

Taking into account the boundary conditions (2) one has 
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this means 
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The equation (34) can be written in the form 
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Because 
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so the solution of equation (39) is the following 
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Finally, the function (27) has the form 
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where: nnnnnn DBFCBE == ,  are the constants. 
Now, the initial conditions (3) should be taken into account, this means 
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For the arguments x∈  [-1, 1] function U (x, 0) can be extended on the uneven 
function  
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Taking into account the expansion of this function into a Fourier series one 
obtains 
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From condition (45) results that the zero function is expanded into the Fourier 
series. In such case 
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Finally, one obtains  
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4. Results of computations 

Application of the boundary element method using discretization in time re-
quires a proper assumption of time step ∆t. Additionally, the integral (20) should 
be determined with sufficient accuracy. To calculate this integral the domain [0, 1] 
is divided into equal M sub-domains and six-point Gauss integral formula is used. 
All computations have been done under the assumption that  10 =U .  

In Figure 1 the curves at the point 5.0=x  for different approximations of time 
derivative (c.f. formulas (5), (6), (7)) are shown. It is visible that the results are 
practically the same. The calculations have been done for ,02.0� =t  M  = 100 and 

for these values very good agreement with analytical solution has been observed. 
Figure 2 illustrates the distribution of function U for times 1, 2, 3, 4 and 5 s. 

 

 

Fig. 1. Course of function U at x = 0.5 

It should be pointed out that the influence of time step �t on the results of com-
putations is big. In Figure 3 the curves at the point 25.0=x  and for 

05.0,02.0,01.0=∆ t  (M  = 100) are shown. 
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Summing up, the BEM using discretization in time constitutes the effective 
numerical method of hyperbolic equation solution but it requires a proper choice 
of time step t∆  and number of internal cells M. 

 

 

Fig. 2. Distribution of function U 

 

Fig. 3. Curves for different �t at the point x = 0.25 
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