The website: http://www.amcm.pcz.pl/

Scientific Research of the Institute of Mathematics and Computer Science

ON SOME PROPERTY OF THE MODIFIED POWER OF AN ALGEBRAIC NUCLEUS

Grażyna Ciecierska

University of Warmia and Mazury in Olsztyn, grac@matman.uwm.edu.pl

Abstract. Given two pairs (Ξ, X) , (Ω, Y) of conjugate linear spaces, we show that the modified power of an algebraic nucleus preserves (Ω, X) - weak continuity of multilinear functionals. An application of the result in the determinant theory is also considered.

Introduction

Algebraic nuclei play an essential role in the theory of determinant systems [1-4]. They allow to construct determinant systems for nuclear perturbations of Fredholm operators, i.e. if $(D_n)_{n\in N\cup\{0\}}$ is a determinant system for Fredholm operator $A\in op(\Omega\to\Xi,X\to Y)$, then one can obtain effective formulae for determinant system for $A+T_F$, where $F\in an(\Omega\to\Xi,X\to Y)$. The terms D_n , $n\in N\cup\{0\}$, are, in particular, bi-skew symmetric multilinear (Ω,X) - weakly continuous functionals. It is well known that functionals $F^{pk}D_{n+k}$, $k\in N$, are bi-skew symmetric. We shall prove that the modified power of an algebraic nucleus transforms (Ω,X) -weakly continuous functionals. Therefore, in view of the result, $F^{pk}D_{n+k}$ are also (Ω,X) - weakly continuous functionals.

1. Terminology and notation

Let (Ξ, X) , (Ω, Y) denote pairs of conjugate linear spaces over the same real or complex field K. A bilinear functional $A: \Omega \times X \to K$, whose value at a point $(\omega, x) \in \Omega \times X$ is denoted by ωAx , satisfying the condition $\omega Ax = \omega(Ax) = (\omega A)x$, where $Ax \in Y$ and $\omega A \in \Xi$, is called (Ξ, Y) - operator on $\Omega \times X$. Let $op(\Omega \to \Xi, X \to Y)$ denotes the space of (Ξ, Y) - operators on $\Omega \times X$. Each $A \in op(\Omega \to \Xi, X \to Y)$ can simultaneously be interpreted as a linear operator $A: X \to Y$ and as a linear operator $A: \Omega \to \Xi$. For fixed non-zero elements

 $x_0 \in X, \quad \omega_0 \in \Xi, \quad x_0 \cdot \omega_0$ denotes the bilinear functional on $\Xi \times Y$, defined by $\xi(x_0 \cdot \omega_0)y = \xi x_0 \cdot \omega_0 y$ for $(\xi,y) \in \Xi \times Y$. A linear functional $F: op(\Xi \to \Omega, Y \to X) \to K$ is called an *algebraic nucleus*, if there exists $T_F \in op(\Omega \to \Xi, X \to Y)$ such that $F(x \cdot \omega) = \omega T_F x$ for $(\omega,x) \in \Omega \times X$. The operator T_F is called a *nuclear operator determined by F*. The space of all algebraic nuclei on $op(\Xi \to \Omega, Y \to X)$ is denoted by $an(\Omega \to \Xi, X \to Y)$. The value of a $(\mu + m)$ -linear functional $D: \Xi^{\mu} \times Y^m \to K$, $\mu, m \in N \cup \{0\}$, at a point $(\xi_1, \ldots, \xi_{\mu}, y_1, \ldots, y_m) \in \Xi^{\mu} \times Y^m$ is denoted by $D\begin{pmatrix} \xi_1, \ldots, \xi_{\mu} \\ y_1, \ldots, y_m \end{pmatrix}$. A $(\mu + m)$ -

linear functional D on $\mathcal{Z}^{\mu} \times Y^m$ is said to be bi-skew symmetric in variables from both \mathcal{Z} , and Y. A $(\mu+m)$ -linear functional $D: \mathcal{Z}^{\mu} \times Y^m \to K$ is said to be (Ω, X) - weakly continuous functional on $\mathcal{Z}^{\mu} \times Y^m$, if for any fixed elements $\xi_1, \dots, \xi_{i-1}, \xi_{i+1}, \dots, \xi_{\mu} \in \mathcal{Z}$ $(i=1,\dots,\mu)$, $y_1,\dots,y_m \in Y$ there exists an element $x_i \in X$ such that $\xi x_i = D\begin{pmatrix} \xi_1,\dots,\xi_{i-1},\xi,\xi_{i+1},\dots,\xi_{\mu} \\ y_1,\dots,y_m \end{pmatrix}$ for every $\xi \in \mathcal{Z}$ and for any fixed elements $\xi_1,\dots,\xi_{\mu} \in \mathcal{Z}$, $y_1,\dots,y_{j-1},y_{j+1},\dots,y_m \in Y$ $(j=1,\dots,m)$ there exists an element $\omega_j \in \Omega$ such that $\omega_j y = D\begin{pmatrix} \xi_1,\dots,\xi_{j-1},y_{j+1},\dots,y_m \in Y \\ y_1,\dots,y_{j-1},y_{j+1},\dots,y_m \end{pmatrix}$ for every $y \in Y$.

For $F \in an(\Omega \to \Xi, X \to Y)$ and a bi-skew symmetric (Ω, X) -weakly continuous functional D on $\Xi^{\mu} \times Y^{m}$, interpreted as a function of variables ξ_{1}, y_{1} only, we define a $(\mu + m - 2)$ -linear functional $F_{\xi_{1},y_{1}}D$ on $\Xi^{\mu-1} \times Y^{m-1}$ by the formula

$$\left(F_{\xi_{1}y_{1}}D\begin{pmatrix} \xi_{2}, \dots, & \xi_{\mu} \\ y_{2}, \dots, & y_{m} \end{pmatrix} = F(A_{1}), \text{ where } \xi_{1}A_{1}y_{1} = D\begin{pmatrix} \xi_{1}, & \xi_{2}, \dots, & \xi_{\mu} \\ y_{1}, & y_{2}, \dots, & y_{m} \end{pmatrix}$$
for $\xi_{1} \in \Xi, y_{1} \in Y$.

If $k = min\{\mu, m\}$, then assuming that $F_{\xi_{k-1}y_{k-1}}F_{\xi_{k-2}y_{k-2}}\dots F_{\xi_{1}y_{1}}D$ is (Ω, X) -weakly continuous functional and interpreting it as a function of variables ξ_{k}, y_{k} only, we define a $(\mu + m - 2k)$ -linear functional $F_{\xi_{k}y_{k}}F_{\xi_{k-1}y_{k-1}}\dots F_{\xi_{1}y_{1}}D$ on

$$\Xi^{\mu-k} \times Y^{m-k}$$
 by $(F_{\xi_k y_k} F_{\xi_{k-1} y_{k-1}} \dots F_{\xi_1 y_1} D \begin{pmatrix} \xi_{k+1}, \dots, \xi_{\mu} \\ y_{k+1}, \dots, y_m \end{pmatrix} = F(A_k),$

$$\text{where } \boldsymbol{\xi}_{\boldsymbol{k}} A_{\boldsymbol{k}} \boldsymbol{y}_{\boldsymbol{k}} = \begin{pmatrix} F_{\boldsymbol{\xi}_{k-1} \boldsymbol{y}_{k-1}} F_{\boldsymbol{\xi}_{k-2} \boldsymbol{y}_{k-2}} \dots F_{\boldsymbol{\xi}_{|\mathcal{Y}|}} D \begin{pmatrix} \boldsymbol{\xi}_{\boldsymbol{k}}, & \boldsymbol{\xi}_{k+1}, \dots, & \boldsymbol{\xi}_{\boldsymbol{\mu}} \\ \boldsymbol{y}_{\boldsymbol{k}}, & \boldsymbol{y}_{k+1}, \dots, & \boldsymbol{y}_{\boldsymbol{m}} \end{pmatrix} \text{ for } \boldsymbol{\xi}_{\boldsymbol{k}} \in \boldsymbol{\Xi}, \, \boldsymbol{y}_{\boldsymbol{k}} \in \boldsymbol{Y} \,.$$

18 G. Ciecierska

Since for fixed $F \in an(\Omega \to \Xi, X \to Y)$ and every permutation τ of integers 1, ..., k, $F_{\xi_{\tau_k} y_{\tau_k}} ... F_{\xi_{\tau_l} y_{\tau_l}} = F_{\xi_k y_k} ... F_{\xi_{1} y_{1}}$ [3], the common value of all $F_{\xi_{\tau_k} y_{\tau_k}} ... F_{\xi_{\tau_l} y_{\tau_l}}$ is denoted by $F_{\square} ... F_{\square}$ [2]. Moreover, $F^{\square k}$ denotes the *modified k-th power of a*

nucleus
$$F$$
, i.e. $F^{\mathbf{p}k} = \frac{1}{k!} \underbrace{F_{\square} \dots F_{\square}}_{k-times}$.

2. Main theorem

Given $F \in an(\Omega \to \Xi, X \to Y)$, $B \in op(\Xi \to \Omega, Y \to X)$, let $T = T_F$ and $(BT)^{(m)} = B(TB)^m$ for $m \in N \cup \{0\}$. Obviously, $(BT)^{(m)} \in op(\Xi \to \Omega, Y \to X)$. If $m = m_1 + m_2 + 1$, $m_1, m_2 \in N \cup \{0\}$, then

$$\xi(BT)^{(m)}y = F_{\xi'y'}\left(\xi'(BT)^{(m_1)}y \cdot \xi(BT)^{(m_2)}y'\right) \text{ for } (\xi,y) \in \Xi \times Y$$

$$\tag{1}$$

$$\xi(BT)^m x = F_{\xi x'} \left(\xi'(BT)^{m_1} x \cdot \xi(BT)^{(m_2)} x' \right) \text{ for } (\xi, x) \in \Xi \times X$$
 (2)

$$\omega(TB)^{m} y = F_{\omega'\nu'} \left(\omega'(BT)^{(m_1)} y \cdot \omega(TB)^{m_2} y'\right) \text{ for } (\omega, y) \in \Omega \times Y$$
(3)

Lemma. Let $F \in an(\Omega \to \Xi, X \to Y)$, $B \in op(\Xi \to \Omega, Y \to X)$, $r = min\{n', m'\}$, $n', m' \in N \cup \{0\}$, $z_1, \ldots, z_{n'} \in X$, $\zeta_1, \ldots, \zeta_{m'} \in \Omega$. If $n \in N$ and $p = (p_1, \ldots, p_{n+n'-r})$, $q = (q_1, \ldots, q_{n+m'-r})$ are permutations of the integers $1, \ldots, n+n'-r$ and $1, \ldots, n+m'-r$, respectively, then for every integer $0 \le k \le \min\{n+n'-r, n+m'-r\}$

$$F_{\xi_{1}y_{1}}\dots F_{\xi_{k}y_{k}}\left(\prod_{i=1}^{n-r}\xi_{p_{i}}By_{q_{i}}\prod_{i=1}^{n'}\xi_{p_{n-r+i}}z_{i}\prod_{i=1}^{m'}\varsigma_{i}y_{q_{n-r+i}}\right) =$$
(4)

$$=c_{k}\prod_{i=1}^{n_{k}}\xi_{\sigma_{i}}(BT)^{(m_{i})}y_{\tau_{i}}\prod_{i=1}^{n+n'-r-k-n_{k}}\xi_{\sigma_{n_{k}+i}}(BT)^{k_{i}}z_{i}\prod_{i=1}^{n+m'-r-k-n_{k}}\varsigma_{i}(TB)^{l_{i}}y_{\tau_{n_{k}+i}}$$

for every $(\xi_1,\ldots,\xi_{n+n'-r},y_1,\ldots,y_{n+m'-r})\in \Xi^{n+n'-r}\times Y^{n+m'-r}$, where $c_k\in K$, $n_k\leq \min\{n+n'-r-k,n+m'-r-k\}$, $(m_i)_{i=1}^{n_k}$, $(k_i)_{i=1}^{n+n'-r-k-n_k}$, $(l_i)_{i=1}^{n+m'-r-k-n_k}$ are finite sequences of non-negative integers, $\sigma=(\sigma_1,\ldots,\sigma_{n+n'-r-k})$, $\tau=(\tau_1,\ldots,\tau_{n+m'-r-k})$ are permutations of integers $k+1,\ldots,n+n'-r$ and $k+1,\ldots,n+m'-r$, respectively.

Proof. Induction on k $(k=0,...,\min\{n+n'-r,n+m'-r\})$. Let $(\xi_1,...,\xi_{n+n'-r},y_1,...,y_{n+m'-r}) \in \Xi^{n+n'-r} \times Y^{n+m'-r}$. If k=0, then (4) holds for $c_0=1$, $n_0=n-r$, $m_i=0$ (i=1,...,n-r), $k_i=0$ (i=1,...,n'), $l_i=0$ (i=1,...,m'), $\sigma=p,\tau=q$. Suppose that (4) holds for k $(0 \le k < \min\{n+n'-r,n+m'-r\})$. Then

$$\begin{split} F_{\xi_{1}y_{1}} \dots F_{\xi_{k+1}y_{k+1}} & \left(\prod_{i=1}^{n-r} \xi_{p_{i}} B y_{q_{i}} \prod_{i=1}^{n'} \xi_{p_{n-r+i}} z_{i} \prod_{i=1}^{m'} \varsigma_{i} y_{q_{n-r+i}} \right) = \\ & = F_{\xi_{k+1}y_{k+1}} & \left(c_{k} \prod_{i=1}^{n_{k}} \xi_{\sigma_{i}} \left(BT \right)^{(m_{i})} y_{\tau_{i}} \prod_{i=1}^{n+n'-r-k-n_{k}} \left(BT \right)^{k_{i}} z_{i} \prod_{i=1}^{n+m'-r-k-n_{k}} \varsigma_{i} \left(TB \right)^{l_{i}} y_{\tau_{n_{k}+i}} \right) \end{split}$$

In the case: $\sigma_{i_0} = k+1$, $\tau_{i_0} = k+1$, $1 \le i_0 \le n_k$, we obtain

$$F_{\xi_{k+1}y_{k+1}}\!\!\left(c_k\prod_{i=1}^{n_k}\xi_{\sigma_i}\!\left(BT\right)^{\!\!\left(m_i\right)}\!y_{\tau_i}\prod_{i=1}^{n+n'-r-k-n_k}\!\xi_{\sigma_{n_k+i}}\!\left(BT\right)^{\!\!k_i}z_i\prod_{i=1}^{n+m'-r-k-n_k}\!\varsigma_i\!\left(TB\right)^{\!\!l_i}y_{\tau_{n_k+i}}\right)\!\!=\!$$

$$=c_{k}F_{\xi_{k+1}y_{k+1}}\Big(\xi_{k+1}\big(BT\big)^{\big(m_{i_{0}}\big)}y_{k+1}\Big)\prod_{\substack{i=1\\i\neq i_{0}}}^{n_{k}}\xi_{\sigma_{i}}\big(BT\big)^{\big(m_{i}\big)}y_{\tau_{i}}$$

$$\cdot \prod_{i=1}^{n+n'-r-k-n_k} \xi_{\sigma_{n_k+i}} (BT)^{k_i} z_i \prod_{i=1}^{n+m'-r-k-n_k} \varsigma_i (TB)^{l_i} y_{\tau_{n_k+i}} =$$

$$= c_{k+1} \prod_{\substack{i=1\\i\neq i,\\j\neq i,\\j\neq i,\\j\neq i,\\l}}^{n_k} \xi_{\sigma_i} (BT)^{(m_i)} y_{\tau_i} \prod_{\substack{i=1\\i=1\\\\i\neq i,\\l}}^{n+n'-r-k-n_k} (BT)^{k_i} z_i \prod_{\substack{i=1\\\\i\neq i,\\l}}^{n+m'-r-k-n_k} \zeta_i (TB)^{l_i} y_{\tau_{n_k+i}}$$

where
$$c_{k+1} = c_k F[(BT)^{(m_{i_0})}]$$

If $\sigma_{i_1} = k + 1$, $\tau_{i_2} = k + 1$, $1 \le i_1, i_2 \le n_k$, $i_1 \ne i_2$, then according to (1)

$$F_{\xi_{k+1}y_{k+1}}\!\!\left(c_k\prod_{i=1}^{n_k}\xi_{\sigma_i}\!\left(\!BT\right)^{\!\!\left(m_i\right)}\!y_{\tau_i}\prod_{i=1}^{n+n'-r-k-n_k}\xi_{\sigma_{n_k+i}}\!\left(\!BT\right)^{\!\!k_i}z_i\prod_{i=1}^{n+m'-r-k-n_k}\varsigma_i\!\left(\!TB\right)^{\!\!l_i}y_{\tau_{n_k+i}}\right)\!\!=\!$$

$$=c_{k}F_{\xi_{k+1}\nu_{k+1}}\left(\xi_{k+1}(BT)^{(m_{i_{1}})}y_{\tau_{i_{1}}}\cdot\xi_{\sigma_{i_{2}}}(BT)^{(m_{i_{2}})}y_{k+1}\right)\prod_{\substack{i=1\\i\neq i,\,i,j}}^{n_{k}}\xi_{\sigma_{i}}(BT)^{(m_{i})}y_{\tau_{i}}$$

$$\prod_{i=1}^{n+n'-r-k-n_k} \xi_{\sigma_{n_k+i}} (BT)^{k_i} z_i \prod_{i=1}^{n+m'-r-k-n_k} \varsigma_i (TB)^{l_i} y_{\tau_{n_k+i}} =$$

$$= c_{k+1} \prod_{\substack{i=1\\i\neq k,\ i_{2}}}^{n_{k}} \xi_{\sigma_{i}} (BT)^{(m_{i})} y_{\tau_{i}} \prod_{\substack{i=1\\i\neq k,\ i_{2}}}^{i=1} \xi_{\sigma_{n_{k}+i}} (BT)^{k_{i}} z_{i} \prod_{\substack{i=1\\i\neq k,\ i_{2}}}^{n+m'-r-k-n_{k}} \zeta_{i} (TB)^{l_{i}} y_{\tau_{n_{k}+i}},$$

where $c_{k+1} = c_k \xi_{\sigma_{i_2}} (BT)^{(m_{i_1} + m_{i_2} + 1)} y_{\tau_{i_k}}$.

If
$$\sigma_{i_1} = k+1$$
, $\tau_{n_k+i_2} = k+1$, $1 \le i_1 \le n_k$, $1 \le i_2 \le n+m'-r-k-n_k$, then by (3)

20 G. Ciecierska

$$\begin{split} &F_{\xi_{k+1}y_{k+1}}\left(c_k\prod_{i=1}^{n_k}\xi_{\sigma_i}(BT)^{(m_i)}y_{\tau_i}\prod_{i=1}^{n+n'-r-k-n_k}\xi_{\sigma_{n_k+i}}(BT)^{k_i}z_i\prod_{i=1}^{n+m'-r-k-n_k}\xi_{\sigma_{n_k+i}}(BT)^{k_i}y_{\tau_{n_k+i}}\right) = \\ &= c_kF_{\xi_{k+1}y_{k+1}}\left(\xi_{k+1}(BT)^{(m_i)}y_{\tau_{\bar{n}}}\cdot \xi_{j_2}(TB)^{l_2}y_{k+1}\right)\prod_{i=1}^{n_k}\xi_{\sigma_i}(BT)^{(m_i)}y_{\tau_i}\\ &\prod_{i=1}^{n+n'-r-k-n_k}(BT)^{k_i}z_i\prod_{i=1}^{n+m'-r-k-n_k}\xi_{\sigma_{n_k+i}}(BT)^{k_i}y_{\tau_{n_k+i}} = \\ &= c_k\xi_{i_2}(TB)^{m_{i_1}+l_{i_2}+1}y_{\tau_{\bar{n}}}\prod_{i=1}^{n_k}\xi_{\sigma_i}(BT)^{(m_i)}y_{\tau_i}\prod_{i=1}^{n+n'-r-k-n_k}(BT)^{k_i}z_i\prod_{i=1}^{n+m'-r-k-n_k}\xi_{\sigma_{n_k+i}}(BT)^{k_i}z_i\prod_{i=1}^{n+m'-r-k-n_k}\xi_{i_2}(TB)^{l_i}y_{\tau_{n_k+i}} + \\ &\prod_{i=1}^{n_k}\xi_{\sigma_i}(BT)^{(m_i)}y_{\tau_i}\prod_{i=1}^{n+n'-r-k-n_k}\xi_{\sigma_{n_k+i}}(BT)^{k_i}z_i\prod_{i=1}^{n+m'-r-k-n_k}\xi_{i_2}(TB)^{l_i}y_{\tau_{n_k+i}} + \\ &= c_kF_{\xi_{k+1}y_{k+1}}\left(\xi_{k+1}(BT)^{k_{\bar{n}}}z_{l_1}\cdot\xi_{\sigma_{\bar{n}_2}}(BT)^{(m_2)}y_{k+1}\right)\prod_{i=1}^{n_k}\xi_{\sigma_i}(BT)^{(m_i)}y_{\tau_i} + \\ &\prod_{i=1}^{n+n'-r-k-n_k}\xi_{\sigma_{n_k+i}}(BT)^{k_i}z_i\prod_{i=1}^{n+m'-r-k-n_k}\xi_{\sigma_{n_k+i}}(BT)^{k_i}z_i\prod_{i=1}^{n+m'-r-k-n_k}\xi_{\sigma_{n_k+i}}(BT)^{k_i}y_{\tau_{n_k+i}} + \\ &= c_{k+1}\prod_{i=1}^{n_k}\xi_{\sigma_i}(BT)^{(m_i)}y_{\tau_i}\prod_{i=1}^{n+m'-r-k-n_k}\xi_{\sigma_{n_k+i}}(BT)^{k_i}z_i\prod_{i=1}^{n+m'-r-k-n_k}\xi_{\sigma_{n_k+i}}(BT)^{k_i}y_{\tau_{n_k+i}} + \\ &= c_{k+1}\prod_{i=1}^{n_k}\xi_{\sigma_i}(BT)^{(m_i)}y_{\tau_i}\prod_{i=1}^{n+n'-r-k-n_k}\xi_{\sigma_{n_k+i}}(BT)^{k_i}z_i\prod_{i=1}^{n+m'-r-k-n_k}\xi_{\sigma_{n_k+i}}(BT)^{k_i}y_{\tau_{n_k+i}} + \\ &\leq c_k\prod_{i=1}^{n_k}\xi_{\sigma_i}(BT)^{(m_i)}y_{\tau_i}\prod_{i=1}^{n+n'-r-k-n_k}\xi_{\sigma_{n_k+i}}(BT)^{k_i}z_i\prod_{i=1}^{n+m'-r-k-n_k}\xi_{\sigma_{n_k+i}}(BT)^{k_i}y_{\tau_{n_k+i}} + \\ &\leq c_k\prod_{i=1}^{n_k}\xi_{\sigma_i}(BT)^{(m_i)}y_{\tau_i}\prod_{i=1}^{n+n'-r-k-n_k}\xi_{\sigma_{n_k+i}}(BT)^{k_i}z_i\prod_{i=1}^{n+n'-r-k-n_k}\xi_{\sigma_{n_k+i}}(BT)^{k_i}y_{\tau_{n_k+i}} + \\ &\leq c_kF_{\xi_{k+1}y_{k+i}}\left(\xi_{k+1}(BT)^{k_i}z_i\prod_{i=1}^{n+n'-r-k-n_k}\xi_{\sigma_{n_k+i}}(BT)^{k_i}z_i\prod_{i=1}^{n+n'-r-k-n_k}\xi_{\sigma_{n_k+i}}(BT)^{k_i}y_{\tau_{n_k+i}} + \\ &\leq c_kF_{\xi_{k+1}y_{k+i}}\left(\xi_{k+1}(BT)^{k_i}z_i\prod_{i=1}^{n+n'-r-k-n_k}\xi_{\sigma_{n_k+i}}(BT)^{k_i}y_{\tau_{n_k+i}}\right) + \\ &\leq c_kF_{\xi_{k+1}y_{k+i}}\left(\xi_{k+1}(BT)^{k_i}z_i\prod_{i=1}^{n-n'-r-k-n_k}\xi_{\sigma_$$

$$=c_{k+1}\prod_{i=1}^{n_k}\xi_{\sigma_i}\big(BT\big)^{\!(m_i)}y_{\tau_i}\prod_{\substack{i=1\\i\neq i,\\i\neq i,}}^{n+n'-r-k-n_k}\xi_{\sigma_{n_k+i}}\big(BT\big)^{\!k_i}z_i\prod_{\substack{i=1\\i\neq i,\\i\neq i,}}^{n+m'-r-k-n_k}\zeta_i\big(TB\big)^{\!l_i}y_{\tau_{n_k+i}},$$

where $c_{k+1} = c_k \zeta_{i_2} (TB)^{l_{i_2} + k_{i_1}} Tz_{i_1}$.

Let $F \in an(\Omega \to \Xi, X \to Y)$. It follows from Lemma that if $(D_n)_{n \in N \cup \{0\}}$ is a determinant system for Fredholm operator $A \in op(\Omega \to \Xi, X \to Y)$ of order $r = min\{n', m'\}$, $n', m' \in N \cup \{0\}$, $B \in op(\Xi \to \Omega, Y \to X)$ is a generalized inverse of A, $\{z_1, \ldots, z_{n'}\}$, $\{c_1, \ldots, c_{m'}\}$ are complete systems of solutions of equations, Ax = 0 and $\omega A = 0$, respectively, $n, k \in N \cup \{0\}$, then for every $0 \le l \le k$ and $(\xi_1, \ldots, \xi_{n+n'-r}, \xi_{n+n'-r+l+1}, \ldots, \xi_{n+n'-r+k}, y_1, \ldots, y_{n+m'-r}, y_{n+m'-r+l+1}, \ldots, y_{n+m'-r+k}) \in \Xi^{n+n'-r+k-l} \times Y^{n+m'-r+k-l}$, $(F_{\xi_{n+n'-r+l}y_{n+m'-r+l}}, \ldots, F_{\xi_{n+n'-r+l}y_{n+m'-r+l}}, D_{n+k})$ is a finite sum of expressions of the form

$$c_{l}\prod_{i=1}^{n_{l}}\xi_{\sigma_{i}}(BT)^{(m_{i})}y_{\tau_{i}}\prod_{i=1}^{n+n'-r+k-l-n_{l}}\xi_{\sigma_{\eta_{l}+i}}(BT)^{k_{i}}z_{i}\prod_{i=1}^{n+m'-r+k-l-n_{l}}\zeta_{i}(TB)^{l_{i}}y_{\tau_{\eta_{l}+i}}$$

where c_l is a constant, $n_l \leq \min\{n+n'-r+k-l,n+m'-r+k-l\}$, $(m_i)_{i=1}^{n_l}$, $(k_i)_{i=1}^{n+n'-r+k-l-n_l}$, $(l_i)_{i=1}^{n+m'-r+k-l-n_l}$ are sequences of non-negative integers, σ , τ are permutations of integers, $1,\ldots,n+n'-r$, $n+n-r+l+1,\ldots,n+n'-r+k$ and $1,\ldots,n+m'-r,n+m'-r+l+1,\ldots,n+m'-r+k$, respectively.

Thus, in view of the above considerations, we obtain the following

Theorem. If $F \in an(\Omega \to \Xi, X \to Y)$, $A \in op(\Omega \to \Xi, X \to Y)$ is a Fredholm operator of order $r = min\{n', m'\}$, $n', m' \in N \cup \{0\}$, and $(D_n)_{n \in N \cup \{0\}}$ is a determinant system for A, then $F^{\square k}D_{n+k}$, where $n, k \in N \cup \{0\}$, is (Ω, X) -weakly continuous functional on $\Xi^{n+n'-r} \times Y^{n+m'-r}$.

Conclusions

We have shown that the modified power $F^{\square k}$ of an algebraic nucleus $F \in an(\Omega \to \Xi, X \to Y)$ preserves (Ω, X) -weak continuity of terms of a determinant system for a given Fredholm operator. The result can be applied to a construction of determinant systems for nuclear perturbations of Fredholm operators.

22 G. Ciecierska

References

- [1] Buraczewski A., *The determinant theory of generalized Fredholm operators*, Studia Math. 1963, 22, 265-307.
- [2] Buraczewski A., Sikorski R., *Analytic formulae for determinant systems in Banach spaces*, Studia Math. 1980, 67, 85-101.
- [3] Sikorski R., The determinant theory in Banach spaces, Colloq. Math. 1961, 8, 141-198.
- [4] Leżański T., *The Fredholm theory of linear equations in Banach spaces*, Studia Math. 1953, 13, 244-276.