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Abstract. Given two pairs (5, X), (Q,Y) of conjugate linear spaces, we show that the
modified power of an algebraic nucleus preserves (Q, X )- weak continuity of multilinear
functionals. An application of the result in the determinant theory is also considered.

Introduction

Algebraic nuclei play an essential role in the theory of determinant systems [1-
-4]. They allow to construct determinant systems for nuclear perturbations of Fred-
holm operators, i.e. if (D,) yUfoy 18 @ determinant system for Fredholm operator
Aecop(Q— E,X —>7Y), then one can obtain effective formulae for determinant
system for A+T,, where Fean(Q—5,X —>Y). The terms D,, ne NuU{0},

are, in particular, bi-skew symmetric multilinear (Q,X )— weakly continuous func-
tionals. It is well known that functionals F”*D, ,, ke N, are bi-skew symmetric.
We shall prove that the modified power of an algebraic nucleus transforms (Q, X ) -
weakly continuous functionals into (Q,X )— weakly continuous functionals. There-

fore, in view of the result, F”*D, ., arealso (Q, X)- weakly continuous functionals.

1. Terminology and notation

Let (5,X), (Q,Y) denote pairs of conjugate linear spaces over the same real or
complex field K. A bilinear functional 4:Qx X — K, whose value at a point
(@,x)eQx X is denoted by wAx, satisfying the condition @Ax = w(Ax)=(wA)x,
where AxeY and wdeZ, is called (5,Y)- operator on QxX. Let
op(2—=,X >Y) denotes the space of (Z,Y)- operators on Q2x.X. Each
Acop(Q— 5,X > Y) can simultaneously be interpreted as a linear operator
A:X »>Y and as a linear operator A4:Q— Z. For fixed non-zero elements
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x,€X, w,€X5, x, -, denotes the bilinear functional on = xY, defined by
& (xo qON )y =&, @,y for (5, y) e ExY. A linear functional
F :op(E ->QY->X )—)K is called an algebraic nucleus, if there exists
T, eop(Q— Z,X - Y) such that F(x-®)=wT,x for (@,x)e Qx X. The opera-
tor 7, is called a nuclear operator determined by F. The space of all algebraic
nuclei on op(5 > Q,Y — X) is denoted by an(Q — =,X —Y). The value of
a (u+m)-linear functional D:Z“xY" K, wpmeNuU{0}, at a point
(,,..., EpsViseeos ym)eE”xY’” is denoted by D(il’m’ i"j A (u+m)-
oeers Vi

linear functional D on E*xY™ is said to be bi-skew symmetric if it is skew sym-
metric in variables from both =, and Y. A (u+m)-linear functional

D:E“xY™ K is said to be (Q,X)- weakly continuous functional on

E#xY"if for any fixed elements &,....& & .....&, €5 (i=L...,u)

Vi Vm €Y there  exists an  element x,eX such  that

&, = D[él"”’ Si>&r6 s S ] for every £eZ and for any fixed elements
Yis o Ym

$1reos8 €, Vs VitsVjstsees YV €Y (j :1,...,m) there exists an element

&, e S,
y15~~'3 y_jflayayjﬂr", ym
For Fean(2—>E5,X »Y) and a bi-skew symmetric (Q, X)-weakly conti-

@; € Q such that a)jyzD[ ] for every yeY.

nuous functional D on Z# xY™, interpreted as a function of variables &, y, only,

we define a (,u +m— 2) -linear functional F, D on = #71xy™ ! by the formula
841

(Fﬁlle{éEZ"'-a 5yJ:F'(Al)a where §1A1y1 :D(é:ls 52,--.5 95;,}
y2)---) ym yl’ yzj.”’ ym

for §eZ,y Y.
F,

If k=min{u,mj, then assuming that F LF., D is (Q,X)-

Sk—1Vk-1" Sk-2Vk-2 """ G
weakly continuous functional and interpreting it as a function of variables &, y,
only, we define a (u+m—2k)-linear functional Fey Fe iy - Fey D on

ok ym—k Shatsees S|
EMTxY by (ngJ’kak—IYk—l "'F§1Y1D{yk | y j_ F(Ak )’
s '

S Sk Sy

J for §, eZ,y, €Y.
Vi Viareo Vo

where gk Akyk = (F‘fk—lyk—l F‘fkfz.kaz o 'vamD{
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Since for fixed F e an(Q >5,X->Y ) and every permutation 7 of integers
L.k, F. , ..F
Ve

tvy = Fey - Fay, [3], the common value of all F. v -+ F is

*T &g

denoted by Fg...Fg [2]. Moreover, F denotes the modified k—th power of a
%/_/

k—times

nucleus F, i.e. F™ =an...Fn .

k—times

2. Main theorem

Given Fean(Q—ZE,X—>Y), Beop(E—>QY—>X), let T=T, and
(BT)™ = B(TB)" for me N U{0}. Obviously, (BT)" eop(Z —Q,¥ — X). If
m=m +m,+1, ml,mzeNu{ } then

BTy = Fyle(BT)™)y - £(BT)™)y) for (£, y)e ZxY (1
g(BT)’”sz,(g(BT’"lx E(BT)™)x) for (£,x)e Zx X )
oTBY'y = F, (/(BTY™)y - o(TBY" ') for (w,y)eQx¥ 3)
Lemma. Let Fean(Q—> EZ,X >7Y), Beop(Z > QY - X),

r:min{n',m'}, n’,m'eNu{O}, ZyyeosZy €X, GlaeensGp €Q. If neN
andp=(pr..pyin)s a=\qs--sq,.,r.,) are permutations of the integers
L...,n+n'—r and 1,...,n+m' —r, respectively, then for every integer
0<k<min{n+n' —r,n+m —r}

i=1

R EXT ) C0 § O @
i=1

y n+n'—r—k—ny, n+m'—r—k—ny,
o[ 1& 61"y, T1 &, 67z [] «(B)y.,,
i=1 i=1 i=l
for every  (Eeirir Vi Ve )EETTI XY where ¢, €K,
m <min{n+n' —r—k,n+m' —r—kj, (m)", (k )1":1" R (li ):':lm'frfk*"k are
finite  sequences of  non-negative integers, o= (0'1 N o P ),
7= (‘L’l Ty k) are permutations of integers k+1,...n+n'—r and

k+1,...,n+m'—r, respectively.
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Proof.  Inducton on &k  (k=0,...min{n+n" —r,n+m' —r).  Let
(Epreeiroirr s Viseois Varr JEE™ T 5 Y™™ If k= 0, then (4) holds for ¢, =1,
ny=n-—r, mi=0(i=1,...,n—r), ki=0(i=1,...,n’), I,:O(izl,...,m'),
o = p,7=q . Suppose that (4) holds for & (0 <k< min{n +n' —r,n+m' - r}) Then

Ny n+n'—r—k-ny nm'—r—k—n,
=l i=1 .
In the case: o, =k+1, 7 =k+1, 1<l0 n,, we obtain

n+n'—r—k-ny n+m'—r—k—n, J

)
Fepn, [C"Hé”cn BTy, T1&,. 1)z Tls8)y.
i=1 i1 i

Ck §k+1yk 1(§k+1 BT ka)Hé: BT

1#10

n+n'—r—k—ny n+m'—r—k—n;

1:[ go—"k-*i (BT)k! Zi 1:[ i (TB)II yTnk +i =

ny n+n'—r—k—ny n+m'—r—k—n
:ck+1H‘§a, (BT)(m’)yr, H‘/:ga,,“i (BT)kI Z ng(TB)l‘ Yz
i=1 i=1 i=1
i#ig
where ¢, , =ckF|_(BT)(m"°)J
If o, =k+1, 7, =k+1, 1<i,,i, <n, i #i,, then according to (1)

n+n'—r—k—ny n+m'—r—k—n;,

F§k+1)’k+1 (Ck H é"f (BT)(ml)yT: H é:an,, +i (BT)k‘ Zi H Si (TB)[I yfnk +i J =
i=1

i=1 i=1

7Tj;
= CkakﬂYkﬂ (é:kﬂ (BT)(mil )yril ’ é:O‘iz (BT)(miz )yk+l )H C—’Zcr,' (BT)(Mi)yr
i=1

i#i) iy

n+n'—r—k—ny, n+m'—r—k—ny,
f: /.
chrnkﬂ-(BT)lzi Hgi(TB)IyT,,kH- =
i=1
ny, n+n'—r—k—ny, n+m'—r—k—ny, .
:Ck+ll_[§a[ (BT m Hgo—nkﬂ Z; Hgf(TB)iyf,,kH,
iy iy =

where ¢, = Ck55,2 (BT)(mil i) Ve, -

If o, =k+1, 7, =k+1, 1<i<m, 1<i,<n+m'—r—k—n,, thenby (3)
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n+n'-r—k—ny n+m'—r—k—n, J

3
%M@Hgmwm [T erys""[1emyy,
i=1 i=1 i=1

1y
- C Sk+1Vk+1 (§k+1 (BT)(mll) Til ’ giz (TB)]iZ yk+1 )H éo’,‘ (BT)(W!I)y
i=1

i#]

n+n'—r—k—ny, . n+m'—r—k—ny ; 1

r;l[gankﬂ (BT) iZi Hgi(TB)innk+j =

- iiy

n+n'—r—k—n; n+m'—r—k—n;
=g, (TB)" =" Hf By, T1&.. 87V z  [lsB)y.
lill = l:¢l'2
If o,.,, =k+1, 7, =k+1, 1<iy<n+n'—r—k-n, 1<i, <n, thenby (2)

n+n'—r—k—nm; n+m'—r—k—ny

W3
F‘fkﬂyk*l (Ck H 50!‘ (BT)(ml)yTI H éank +i (BT)k’ Zf H gi (TB)II yT"k +i J )

i=1 i=1 i=1

1k
- ckF§k+1J’k+1 ( k+1 (BT)ki] Zi1 ’ 50'1'2 (BT)(m'2 )yk+l)H§O'i (BT)(m')y
i=l

iiy
n+n'—r—k—ny, n+m'—r—k—ny
Héo‘,,kﬂ- (BT)kl Z; ng (TB)II yr,,kﬂ- =
por -
n n+n'—r—k—ny, . n+m'—r—k—ny ;
e [16 e, e ey [Teims) ., .
i=1 i=l1 i=1
i) i#iy

+1;, +1

where ¢, =¢6,, (rB)"1*'e Ve -
If o .. =k+1, 7

ny+i > Ungtip

1<i, <n+m'—r—k—n,, then we obtain

=k+1, 1<i <n+n'-r—k-n,

n+n'—r—k-ny n+m'—r—k-n, J

ka+1)’k+‘ [Ck]i[é:o_i (BT)(mI)yTz H é:ankﬂ' (BT)kl Zi Hg’ (TB)IK yT
i=1 i=1 i=1

= F: (§k+l (BT)kil Zy "6y (TB)li2 Yin )l_klégo—i (BT)(mi)yq
ntn'—r—k—ny nim'—r—k—ny .

Hgg,,kﬂ (BT)ki Z; Hgi(TB)li Vi =

= =
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ny n+n'—r—k—ny n+m'—-r—k—ny
e[ 16,61y, Tl&, . B7Vz []ea@8)y,, .
i=1 i=1 i=1
i#il i#iz

i +k;
where ¢, = ¢,5,, (TB)= " Tz,

Let Fean(Q— Z,X - Y). It follows from Lemma that if (D,) is a de-

neNU{0}
terminant system for Fredholm operator Aeop(Q > E,X->Y ) of order
r=min{n',m'}, n',m'e NU{0}, Beop(5 -Q,Y - X) is a generalized inverse
of A4, {zl,...,zn,}, {gl,...,gm,}are complete systems of solutions of equations,
Ax=0 and wA=0, respectively, n,ke NuU {0}, then for every 0</<kand

—n+n'—r+k-I n+m'—r+k-1
(‘fl [ARRE §n+n’—r ’ §n+n'—r+l+1 EARRE §n+n’—r+k s Voo Viwm—r > Virmi—r+ia1+ =5 Vnem'—r+k )e = xY

b

(;:1 LR é/ﬁ—n'—r > §n+n'—i‘+/+1 LR §n+n’—r+k : :
is a finite
<F§n+n’—r+lJ’n+m’—r+l e F§n+n’—r+1J’n+m’—r+1 n+k { J

Yiseoos Vormi=rs YVnsm'—r+i+15++5 Vosm'—r+k

sum of expressions of the form

n+n'—r+k—I-n; n+m'—r+k—l-n;

ny
(m;) k. /;
o[ Te ey, Tlen 67V [la)y,,

i=l i=1 i=1

where ¢, is a constant, n, <min{n+n' —r+k—Ln+m —r+k—1}, (m)",
i=1
(ke ek teme (g Y are sequences of non-negative integers, o, T are
permutations of integers, l,....n+n'—r, n+n—r+I[+1,....n+n —r+k and
L..,n+m' —r,n+m —r+1+1,...,n+m' —r +k, respectively.
Thus, in view of the above considerations, we obtain the following

Theorem. If F e an(Q > E.X > Y), Ae op(Q > E.X > Y) is a Fredholm

operator of order r=min{n',m'}, n',m'e N U{0}, and (D,) is a determi-

neNu{O}
nant system for A, then F ok D,.., where n,ke N {0}, is (Q,X ) -weakly conti-

nuous functional on E"" " x YY",

Conclusions

We have shown that the modified power F™ of an algebraic nucleus
Fean(Q—> E5,X >Y ) preserves (Q,X)-weak continuity of terms of a determi-

nant system for a given Fredholm operator. The result can be applied to a construc-
tion of determinant systems for nuclear perturbations of Fredholm operators.
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