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Abstract. The domain of tissue with a tumor subjected to the action of electrodes located on 

the skin surface is considered. External electric field causes the heat generation in the domain 

analyzed. The distribution of electric potential is described by the system of Laplace’s equa-

tions, while the temperature field is described by the system of Pennes’ equations. On the con-

tact surface between healthy tissue and tumor region the ideal electric and ideal thermal con-

tacts are assumed. To assure the optimum conditions of tumor destruction the magnetic 

nanoparticles are introduced to the tumor region. The aim of investigations is to determine 

the temperature field in the domain considered for different size and positions of external 

electrodes, in other words to choose such electrodes which assure the cancer destruction. To 

solve the coupled problem connected with the biological tissue heating the boundary element 

method is used. In the final part of the paper the examples of computations are shown. 

1. Governing equations 

The potential ( )φ ,e x y  inside the healthy tissue (e = 1) and tumor region (e = 2)  

(Fig. 1) is described by the system of Laplace’s equations 

 ( ) ( )2
, : ε φ , 0e e ex y x y∈Ω ∇ =  (1) 

where ε
e
[C

2
/(Nm

2
)] is the dielectric permittivity of sub-domain Ωe  . At the inter- 

face Γc of the tumor and healthy tissue the ideal electric contact is assumed 
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On the external surface of tissue being in a contact with the electrodes the fol-

lowing condition is given 
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where U [V] is the electric potential of the electrode relative to the ground. On 

the remaining external boundary of tissue the ideal electric isolation is assumed: 

( )1 1ε φ , / 0x y n− ∂ ∂ = . 

The electric field inside the tissue is determined by equation 

 ( ) ( ), φ ,e ex y x y= −∇E  (4) 

 

Fig. 1. Action of electric field on the  tissue with a tumor - hyperthermia system 

The temperature field in the healthy tissue and the tumor region with embedded 

magnetic nanoparticles is described by the system of Pennes’ equations [1, 2] 

 ( ) ( ) ( )2
λ , , , 0e e e B e met e eT x y k T T x y Q Q x y∇ +  −  + + =   (5) 

where e = 1, e = 2 correspond to the healthy tissue and tumor region, respectively,  

Te denotes temperature, λe [W/(mK)] is the thermal conductivity, ke = GBecB (GBe [1/s] 

is the perfusion coefficient, cB [J/(m
3
K)] is the volumetric specific heat of blood), 

TB is the supplying arterial blood temperature, Qmet e [W/m
3
] is the metabolic heat 

source, Qe(x, y) [W/m
3
] is the heat source connected with the electromagnetic field 

action.  

It should be pointed out that the thermal conductivity λ2 of tumor region with 

nanoparticles can be calculated as follows: ( )2 2 31/ λ 1 / λ / λ′= − Θ + Θ , where 

2 3λ , λ′  are the thermal conductivities of tumor and nanoparticles, respectively and 
2πn rΘ =  is the concentration of particles (n is the number of particles, r is the 

radius of particle). 
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Source function Q1 [W/m
3
] connected with the electromagnetic dissipated power 

in healthy tissue depends on the conductivity σ1 [S/m] and the electric field E1 [1] 

 ( )
( )1 1

1

σ ,
,

2

x y
Q x y =

E
 (6) 

The tumor region with embedded magnetic particles is treated as a composite and 

due to the assumed homogeneity of Ω2 the mean value of electrical conductivity σ2 

of this sub-domain can be approximated as: ( )2 2 31/ σ 1 / σ / σ′= − Θ + Θ , where 

2 3σ , σ′ are the electrical conductivities of tumor and particles, respectively. 

Under the assumption that Pt is the tumor area, for ( ) 2,x y ∈Ω one has 
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where PSPM is the heat generation connected with the superparamagnetism (SPM) [1]. 

At the contact surface Γc between the tumor and healthy tissue the ideal contact 

is assumed 
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On the upper and lower surfaces of healthy tissue domain (skin surface) the Robin 

condition (convection) is assumed 

 
( )

( )1

1 1

,
λ α ,

w w

T x y
T x y T

n

∂
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 (9) 

where αw [W/(m
2
K)] is the heat transfer coefficient between the skin surface and 

the cooling water, Tw is the cooling water temperature. On the remaining bounda-

ries the adiabatic condition 1 1λ / 0T n− ∂ ∂ =  can be taken into account. This condi-

tion results from the consideration that at the positions far from the center of the 

domain the temperature field is almost not affected by the external heating [1]. 

2. Boundary element method 

To solve the equations describing the potential of electric field and the tempera-

ture field in the domain considered  the boundary element method has been applied 

[3, 4]. 
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The boundary integral equations corresponding to the equations (1) can be ex-

pressed as 
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where ( )ξ, η  is the observation point, the coefficient ( )ξ, ηeB  is dependent on the 

location of source point ( )ξ, η , ( ) ( )ψ , ε φ , /e e ex y x y n= − ∂ ∂ . For domain Ω1 the 

boundary Γ corresponds to the external and internal boundary of healthy tissue, for 

domain Ω2 the boundary Γ denotes Γc. Fundamental solutions of the problem dis-

cussed have the following form 

 ( )* 1 1
φ ξ, η, , ln

2πε
e

e

x y
r

=  (11) 

where r is the distance between points ( )ξ, η  and ( ),x y . Differentiating the func- 

tion ( )*φ ξ, η, ,
e

x y  with respect to the outward normal [ ]cosα, cosβ=n  the 

function ( )*ψ ξ, η, ,
e

x y  is obtained 
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where 

 ( ) ( )ξ cosα η cosβd x y= − + −  (13) 

To solve the system of equations (10) the external and internal boundaries should 

be divided into boundary elements. Here the constant boundary elements have been 

taken into account as shown in Figure 2. Next, the integrals appearing in equations 

(10) are substituted by the sum of integrals over the boundary elements. Introduc-

ing the boundary conditions,  finally one obtains the system of algebraic equations 

from which the ’missing’ boundary values are determined. Last stage of computa-

tions consists in the determination of potentials ( )φ ,e x y  at the internal points from 

healthy tissue and tumor region, separately. 

The Pennes equations (5) can be written in the form 

 ( ) ( ) ( ) ( )2
, : λ , , , 0

e

e e e e ex y T x y k T x y Q x y∈Ω ∇ − + =  (14) 

where ( ) ( ), , ,
e
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Fig. 2. Discretization of tissue-tumor boundaries 

The boundary integral equations corresponding to the equations (14) can be 

written as follows [4] 
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is a fundamental solution and 
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while ( ) ( ), λ , /e e eq x y T x y n= − ∂ ∂ . In the formulas (16), (17) ( ) ( )0 1,K K⋅ ⋅  are the 

modified Bessel’s functions of second kind, zero and first order, respectively. To 

solve the equations (15), not only the boundary but also the interior of the sub- 

domains considered should be discretized. It should be pointed out that the mesh 

shown in Figure 3 has been obtained using the commercial package MSC Patran/ 

Nastran and next for the nodes obtained the boundary element method has been 

applied. 
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Fig. 3. Discretization of tissue-tumor domains 

3. Results of computations 

The rectangular domain of dimensions 0.08 m×0.04 m has been considered. The 

external boundary of the tissue has been divided into 120 constant boundary ele- 

ments, the interface Γc of the tumor and tissue has been divided into 40 boundary 

elements (Fig. 2). To solve the Pennes equation in the interiors of Ω1 and Ω2, 461 

and 129 nodes (internal cells) have been distinguished (Fig. 3). 

The different heating areas are collected in Table 1 and shown in Figure 4. In 

the Table 2 the maximum temperatures of tumor region for all variants are collected. 

Table 1. Size and location of external electrodes 

 x [m] y [m] 

variant 1 
0.034 – 0.044 

0.034 – 0.044 

0 

0.04 

variant 2 
0.026 – 0.052 

0.026 – 0.052 

0 

0.04 

variant 3 
0.02 – 0.058 

0.02 – 0.058 

0 

0.04 

variant 4 
0.01 – 0.03 

0.01 – 0.03 

0 

0.04 

Table 2. Maximum temperature in tumor region 

 variant 1 variant 2 variant 3 variant 4 

T [°C] 40.58 46.16 48.34 49.84 
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Fig. 4. Size and location of external electrodes 

The voltage applied on external electrodes (upper and lower) equals 6 and −6 V, 

respectively. For biological tissue and tumor region the following parameters have 

been assumed: thermal conductivities λ1 = 0.5 W/(mK), λ2 = 0.6 W/(mK), perfu- 

sion coefficients GB1 = 0.0005 1/s, GB2 = 0.002 1/s, metabolic heat sources Qmet1 = 

= 420 W/m
3
, Qmet2 = 4200 W/m

3
, blood temperature TB = 37°C [2]. For nanoparticles 

the following parameters have been assumed: thermal conductivity λ3 = 40 W/(mK), 

electrical conductivity σ3 = 25000 S, in tumor region n = 10
8
 nanoparticles with 

radiuses r = 10
−8

 (iron oxide Fe3O4) are embedded. 

 

 

Fig. 5. Temperature distribution for variant 1 

 

Fig. 6. Temperature distribution for variant 2 
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Fig. 7. Temperature distribution for variant 3 

 

Fig. 8. Temperature distribution for variant 4 

Conclusions 

The computations presented in this paper show that the location and size of 

external electrodes have big influence on the temperature distribution in the tissue 

with a tumor. The electrodes assumed in the variant 1 are too small for obtaining 

the hyperthermia state, but electrodes assumed in the variant 4 are too big, and then 

not only the tumor will be destroyed but also part of the healthy tissue. Optimum 

size of electrodes corresponds to the variant 2. 
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